Скачать презентацию Description of Interactive Modeling Simulation Animation and Real-Time Скачать презентацию Description of Interactive Modeling Simulation Animation and Real-Time

e719a089e516e40d9a4e4bc15c0caa77.ppt

  • Количество слайдов: 30

Description of Interactive Modeling, Simulation, Animation, and Real-Time Control (Mo. SART) Aircraft Environment Tae-Young Description of Interactive Modeling, Simulation, Animation, and Real-Time Control (Mo. SART) Aircraft Environment Tae-Young Kim Richard P. Metzger, Jr. Chen-l Lim Armando A. Rodriguez ASEE Pacific Southwest Meeting `99 Saturday, March 20 th 1999 Harrah’s Hotel Las Vegas, Nevada Ack : White House , NSF, WAESO/CIMD, Boeing, Intel, Microsoft, CADSI, Knowledge Revolution, Math. Works, Lego, Xilinx, Honeywell, National Instruments, Integrated Systems, ASU CIEE. http: //www. eas. asu. edu/~aar/research/mosart

Outline • Motivation • Mathematical Models • Control Laws • Environment • Utility • Outline • Motivation • Mathematical Models • Control Laws • Environment • Utility • Summary & Future Directions

Motivation • MIMO Aircraft Control Design - High Performance Extensive Coupling • Need Advanced Motivation • MIMO Aircraft Control Design - High Performance Extensive Coupling • Need Advanced Analysis, Design, and Visualization Tools

Aircraft Mathematical Models Aircraft Mathematical Models

Longitudinal Pitch Dynamics. x= Ax + Bu y= Cx u (Inputs) y (Outputs) ele Longitudinal Pitch Dynamics. x= Ax + Bu y= Cx u (Inputs) y (Outputs) ele (Elevator) rpm (Engine rpm) (Pitch) v v x (States) (Speed) (Alpha) . (Pitch) (Pitch rate) (Speed)

Longitudinal Pitch Dynamics Open Loop Poles and Transmission zero Short Period Mode Transmission Zero Longitudinal Pitch Dynamics Open Loop Poles and Transmission zero Short Period Mode Transmission Zero = - 0. 5823 Phugoid Mode

Longitudinal Pitch Dynamics Modal Analysis Nearly Constant Angle of Attack Nearly Constant Velocity Long-Period Longitudinal Pitch Dynamics Modal Analysis Nearly Constant Angle of Attack Nearly Constant Velocity Long-Period Mode

Longitudinal Pitch Dynamics Open Loop Singular Values Longitudinal Pitch Dynamics Open Loop Singular Values

Lateral (Roll - Yaw Rate) Dynamics. x= Ax + Bu y= Cx u (Inputs) Lateral (Roll - Yaw Rate) Dynamics. x= Ax + Bu y= Cx u (Inputs) y (Outputs) ail (Aileron) (Roll angle) rud (Rudder) . (Yaw Rate) . (Roll rate) x (States) (Roll). (Yaw rate) (Side Slip Angle)

Lateral (Roll-Yaw rate) Dynamics Open Loop Poles and Transmission zero Dutch Roll Subsidence Transmission Lateral (Roll-Yaw rate) Dynamics Open Loop Poles and Transmission zero Dutch Roll Subsidence Transmission Zero = - 0. 0841 Spiral Divergence

Lateral (Roll-Yaw Rate) Dynamics Modal Analysis Usually not Objectionalble Light Damping Rolling Responses Lateral (Roll-Yaw Rate) Dynamics Modal Analysis Usually not Objectionalble Light Damping Rolling Responses

Lateral (Roll-Yaw Rate) Dynamics Open Loop Singular Values Lateral (Roll-Yaw Rate) Dynamics Open Loop Singular Values

Control Laws Control Laws

Control System Design r e K u di Controller do P y Plant n Control System Design r e K u di Controller do P y Plant n • Design K based on model Po s. t. nominal CLS exhibits: – Stability and Stability Robustness – Good Command Following – Good Disturbance Rejection – Good Noise Attenuation – Robust Performance

H Controller e W 1(s) u W 2(s) r e u y P(s) u H Controller e W 1(s) u W 2(s) r e u y P(s) u K(s) W 1 S(s) W 2 R(s) W 3 T(s) W 3 (s) e < H

H Norm W 1 S(s) W 2 R(s) W 3 T(s) = max H H Norm W 1 S(s) W 2 R(s) W 3 T(s) = max H W 1 S(j ) W 2 R(j ) W 3 T(j )

Longitudinal (Pitch) Dynamics : W 1, W 2, and W 3 = 0. 6337 Longitudinal (Pitch) Dynamics : W 1, W 2, and W 3 = 0. 6337 = 1/1. 5781 W 1 (s) = d i a g W 2 (s) = d i a g W 3 (s) = d i a g (s + 1. 3 s + 0. 22)(s + 0. 0001) 1. 3 , 1. 3 0. 6337 0. 01 , 0. 6337(s + 0. 0001) 2

Longitudinal (Pitch) Dynamics : Complementary Sensitivity : T = [I + PK]-1 PK Longitudinal (Pitch) Dynamics : Complementary Sensitivity : T = [I + PK]-1 PK

Longitudinal (Pitch) Dynamics : Sensitivity : S = I - T Longitudinal (Pitch) Dynamics : Sensitivity : S = I - T

Longitudinal (Pitch) Dynamics : Reference command Following [ v] = [ 1 0 ] Longitudinal (Pitch) Dynamics : Reference command Following [ v] = [ 1 0 ] [ v] = [ 0 1 ]

Lateral (Roll- Yaw rate) Dynamics : W 1, W 2, W 3 and = Lateral (Roll- Yaw rate) Dynamics : W 1, W 2, W 3 and = 0. 7574 = 1/1. 3203 W 1 (s) = d i a g W 2 (s) = W 3 (s) = diag (s + 1)(s + 0. 0001) 1 , 1 0. 7574 0. 01 , 0. 7574(s + 04) (s + 0. 0001) , 0. 7574(s + 0. 4) (s + 0. 0001)

Lateral (Roll - Yaw Rate) Dynamics : Complementary Sensitivity : T = [I + Lateral (Roll - Yaw Rate) Dynamics : Complementary Sensitivity : T = [I + PK]-1 PK

Lateral (Roll - Yaw Rate) Dynamics : Sensitivity : S = I -T Lateral (Roll - Yaw Rate) Dynamics : Sensitivity : S = I -T

Lateral (Roll - Yaw Rate) Dynamics : Reference command Following . [ ] = Lateral (Roll - Yaw Rate) Dynamics : Reference command Following . [ ] = [1 0] . [ ] = [0 1]

Environment Structure • Program User Interface UI) (P IM) • Simulation Module (S AM) Environment Structure • Program User Interface UI) (P IM) • Simulation Module (S AM) • Graphical Animation Module (G OM) • Communications Module (C • Help-Instruct Module IM) (H

Utility of Environment SIMULINK Driven 3 D Animation Environment : Evaluation of H Design Utility of Environment SIMULINK Driven 3 D Animation Environment : Evaluation of H Design

SIMULINK Engine Driven 3 D Animation Aircraft Environment Interactive with MATLAB Aircraft 3 D SIMULINK Engine Driven 3 D Animation Aircraft Environment Interactive with MATLAB Aircraft 3 D Animation

SIMULINK Engine Driven 3 D Animation Aircraft Environment Interactive with SIMULINK Engine and 3 SIMULINK Engine Driven 3 D Animation Aircraft Environment Interactive with SIMULINK Engine and 3 D Animation Reference Commands

Summary • Versatile system-specific interactive Mo. SART environments • • Windows / C++ / Summary • Versatile system-specific interactive Mo. SART environments • • Windows / C++ / Direct-X / MATLAB User friendly: accessible & intuitive User can alter model structures & parameters Highly extensible: ability to incorporate new simulation/animation models

Future Directions More visual indicators Advanced SIM and GAM Expanded HIM: web support, multimedia Future Directions More visual indicators Advanced SIM and GAM Expanded HIM: web support, multimedia Enhanced integration with MATLAB Integrated design & analysis environment … development of Mo. SART Facility at ASU Online presentation available at: Visit Mo. SART facility web site: http: //www. eas. asu. edu/~aar/research/mosart/Presentations