302a89de9fd43066792301523a841968.ppt
- Количество слайдов: 27
CPS 290. 2 Computer Security Tutorial on Creating Certificates SSH Kerberos CPS 290 Page 1
Acting as Your own Certificate Authority (CA) 1. a. Create private root key for CA b. Create self-signed root certificate 2. a. Create private intermediate key b. Create intermediate certificate signing request (CSR) c. Sign intermediate certificate 3. a. Create private key for domain www. example. com b. Create CSR for domain c. Sign certificate for domain using intermediate private key Might do this when setting up secure web sites within a corporate intranet. CPS 290 Page 2
Create Files and Directories index. txt stores database of certificates created serial holds serial number of next certificate CPS 290 Page 3
Create Configuration File Strict policy requires organization names in parent and child certificates to match, e. g. , when used in intranet. CPS 290 Page 4
Create Root Private Key Private key is encrypted using pass phrase as key to AES 256 algorithm. CPS 290 Page 5
Create Root Certificate -x 509 indicates self-signed certificate sha 256 algorithm used to create message digest (hash) of certificate, which is then (self) signed CPS 290 Page 6
Examine the Root Certificate CPS 290 Page 7
CPS 290 Page 8
CPS 290 Page 9
Create Private Intermediate Key CPS 290 Page 10
Create Intermediate CSR sha 256 digest (hash) of applicant information signed with intermediate private key – can check that it can be decoded with intermediate public key CPS 290 Page 11
Sign Intermediate Certificate CPS 290 Page 12
Examine Signed Intermediate Certificate CPS 290 Page 13
CPS 290 Page 14
CPS 290 Page 15
Verify Signed Certificate Using Root Certificate CPS 290 Page 16
Create Private Key for Domain CPS 290 Page 17
Create CSR for Domain www. example. com CPS 290 Page 18
Sign Certificate for Domain CPS 290 Page 19
SSH v 2 • Server has a permanent “host” public-private key pair (RSA or DSA). Public key typically NOT signed by a certificate authority. Client warns if public host key changes. • Diffie-Hellman used to exchange session key. – Server selects g and p (group size) and sends to client. – Client and server create DH private keys a and b. Client sends public DH key ga. – Server sends public DH key gb and signs hash of DH shared secret gab and 12 other values with its private “host” key. – Client verifies signed shared secret using public key. • Symmetric encryption using 3 DES, Blowfish, AES, or Arcfour begins. • User can authenticate by sending password or using publicprivate key pair. Private key has optional passphrase. • If using keys, server sends “challenge” signed with users public key for user to decode with private key. CPS 290 Page 20
Why Combine RSA and Diffie-Hellman? Why doesn’t the client just send a symmetric key to the server, encrypted with the server’s public key? Because if the server’s private key is later compromised, previous communications encrypted with the public key can be decrypted, revealing the symmetric key. Then all communications encrypted with the symmetric key can also be decrypted! To prevent this attack, Diffie-Hellman ensures that the symmetric key is never transmitted, even in encrypted form, and the client and server discard the symmetric key after the session is over. SSL/TLS provides this option too: DHE_RSA key exchange CPS 290 Page 21
SSH Applications Secure Shell (SSH): Replacement for insecure telnet, rlogin, rsh, rexec, which sent plaintext passwords over the network! CPS 290 Page 22
SSH Applications Port forwarding (email example): Log in to linux. cs. duke. edu. Forward anything received locally (phoenix) on port 25 to linux. cs. duke. edu on port 25. Useful if “phoenix” is not a trusted email relayer but “linux” is. “phoenix” email program configured to use phoenix as relayer CPS 290 Page 23
Kerberos A key-serving system based on Private-Keys (DES). Assumptions • Built on top of TCP/IP networks • Many “clients ” (typically users, but perhaps software) • Many “servers ” (e. g. file servers, compute servers, print servers, …) • User machines and servers are potentially insecure without compromising the whole system • A kerberos server must be secure. CPS 290 Page 24
Kerberos (kinit) Kerberos Authentication Server 2 1 Client (C) 1. 2. 3. 4. 5. 3 Ticket Granting Server (TGS) 4 5 Service Server (S) Request ticket-granting-ticket (TGT)
Kerberos V Message Formats C = client S = server K = key or session key T = timestamp V = time range TGS = Ticket Granting Service A = Net Address Ticket Granting Ticket: TC, TGS = TGS, {C, A, V, KC, TGS}KTGS Server Ticket: TC, S = S, {C, A, V, KC, S}KS Authenticator: AC, S = {C, T}KC, S 1. 2. 3. 4. 5. Client to Kerberos: C, TGS Kerberos to Client: {KC, TGS}KC, TGS Client to TGS: TC, TGS , S, AC, TGS to Client: {KC, S}KC, TGS, TC, S Client to Server: AC, S, TC, S CPS 290 Possibly repeat Page 26
Kerberos Notes All machines have to have synchronized clocks – Must not be able to reuse authenticators Servers should store all previous and valid tickets – Help prevent replays Client keys are typically a one-way hash of the password. Clients do not keep these keys. Kerberos 5 uses CBC mode for encryption Kerberos 4 was insecure because it used a nonstandard mode. CPS 290 Page 27