Скачать презентацию Computer Networking Yishay Mansour mansour cs tau ac il Скачать презентацию Computer Networking Yishay Mansour mansour cs tau ac il

d367ed57e67cabac15466176e19e0548.ppt

  • Количество слайдов: 55

Computer Networking Yishay Mansour (mansour@cs. tau. ac. il) David Raz (http: //www. cs. tau. Computer Networking Yishay Mansour ([email protected] tau. ac. il) David Raz (http: //www. cs. tau. ac. il/~radivraz) 1

Course Information Lectures: Tuesday 9 -12 Exercises: Tuesday 14 -15 (one more …) Web Course Information Lectures: Tuesday 9 -12 Exercises: Tuesday 14 -15 (one more …) Web site: http: //www. cs. tau. ac. il/~mansour Books: An Engineering Approach to Computer Networking / Keshav A Top-down Approach to Computer Networking / Kurouse-Ross Computer Networks / Tanenbaum Data Networks / Bertsekas and Gallager 2

Practical Information Homework assignment: Mandatory Both theoretical and programming Done in pairs Grades: Final Practical Information Homework assignment: Mandatory Both theoretical and programming Done in pairs Grades: Final Exam: theory exercises: Programming exercises: 60% January 28 and October 10 20% 3

Motivation n Today’s economy n n manufacturing, distributing, and retailing goods but also creating Motivation n Today’s economy n n manufacturing, distributing, and retailing goods but also creating and disseminating information n publishing banking film making…. part of the ‘information economy’ n Future economy is likely to be dominated by information! 4

Information? n n A representation of knowledge Examples: n n Can be represented in Information? n n A representation of knowledge Examples: n n Can be represented in two ways n n n books bills CDs & DVDs analog (atoms) digital (bits) the Digital Revolution n n convert information as atoms to information as bits use networks to move bits around instead of atoms 5

The Challenges t t represent all types of information as bits. move the bits The Challenges t t represent all types of information as bits. move the bits u u u In large quantities, everywhere, cheaply, Securely, with quality of service, …. 6

Today’s Networks are complex! t t t hosts routers links of various media applications Today’s Networks are complex! t t t hosts routers links of various media applications protocols hardware, software Tomorrow’s will be even more! 7

This course’s Challenge n n n To discuss this complexity in an organized way, This course’s Challenge n n n To discuss this complexity in an organized way, that will make today’s computer networks (and their limitations) more comprehensive. identification, and understanding relationship of complex system’s pieces. Problems that are beyond a specific technology 8

Early communications systems n n n I. e. telephone point-to-point links directly connect together Early communications systems n n n I. e. telephone point-to-point links directly connect together the users wishing to communicate use dedicated communication circuit if distance between users increases beyond the length of the cable, the connection is formed by a number of sections connected end-to-end in series. 9

Data Networks n n set of interconnected nodes exchange information sharing of the transmission Data Networks n n set of interconnected nodes exchange information sharing of the transmission circuits= "switching". many links allow more than one path between every 2 nodes. network must select an appropriate path for each required connection. 10

Networking Issues - Telephone t. Addressing - identify the end user phone number 1 Networking Issues - Telephone t. Addressing - identify the end user phone number 1 -201 -222 -2673 = country code + city code + exchange + number t Routing - How to get from source to destination. Telephone circuit switching: Based on the phone number. t Information Units - How is information sent telephone Samples @ Fixed sampling rate. not self descriptive! have to know where and when a sample came 11

Networking Issues - Internet t Addressing - identify the end user IP addresses 132. Networking Issues - Internet t Addressing - identify the end user IP addresses 132. 66. 48. 37, Refer to a host interface = network number + host number t Routing- How to get from source to destination Packet switching: move packets (chunks) of data among routers from source to destination independently. t Information Units - How is information sent. Self-descriptive data: packet = data + metadata (header). 12

Telephone networks support a single, end-toend quality of service but is expensive to boot Telephone networks support a single, end-toend quality of service but is expensive to boot Internet supports no quality of service but is flexible and cheap Future networks will have to support a wide range of service qualities at a reasonable cost 13

History 1961 -1972: Early packet-switching principles 1961: Kleinrock - queuing theory shows effectiveness of History 1961 -1972: Early packet-switching principles 1961: Kleinrock - queuing theory shows effectiveness of packet-switching 1964: Baran - packet-switching in military networks 1967: ARPAnet – conceived by Advanced Research Projects Agency 1969: first ARPAnet node operational 1972: ARPAnet demonstrated publicly n NCP (Network Control Protocol) first host-host protocol n first e-mail program n ARPAnet has 15 nodes 14

History 1972 -1980: Internetworking, new and proprietary nets 1970: ALOHAnet satellite network in Hawaii History 1972 -1980: Internetworking, new and proprietary nets 1970: ALOHAnet satellite network in Hawaii 1973: Metcalfe’s Ph. D thesis proposes Ethernet 1974: Cerf and Kahn - architecture for interconnecting networks late 70’s: proprietary architectures: DECnet, SNA, XNA late 70’s: switching fixed length packets (ATM precursor) 1979: ARPAnet has 200 nodes 15

Cerf and Kahn’s internetworking principles: n n minimalism, autonomy - no internal changes required Cerf and Kahn’s internetworking principles: n n minimalism, autonomy - no internal changes required to interconnect networks best effort service model stateless routers decentralized control Defines today’s Internet architecture 16

History 1980 -1990: new protocols, proliferation of networks 1983: 1982: 1983: 1985: 1988: deployment History 1980 -1990: new protocols, proliferation of networks 1983: 1982: 1983: 1985: 1988: deployment of TCP/IP SMTP e-mail protocol defined DNS defined for name-to-IP-address translation FTP protocol defined TCP congestion control new national networks: CSnet, BITnet, NSFnet, Minitel 100, 000 hosts connected to confederation of networks 17

History 1990 - : commercialization and WWW early 1990’s: ARPAnet decomissioned 1991: NSF lifts History 1990 - : commercialization and WWW early 1990’s: ARPAnet decomissioned 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995) early 1990 s: WWW hypertext [Bush 1945, Nelson 1960’s] HTML, http: Berners-Lee 1994: Mosaic, later Netscape late 1990’s: commercialization of WWW 18

Demand Supply n Huge growth in users n n Faster home access n n Demand Supply n Huge growth in users n n Faster home access n n Better user experience. Infrastructure n n The introduction of the web Significant portion of telecommunication. New evolving industries n Although, sometimes temporary setbacks 19

Internet: Users 20 Internet: Users 20

Users around the Globe (2002/5) 23 Users around the Globe (2002/5) 23

Technology: Modem speed 24 Technology: Modem speed 24

Today’s options n n Modem: 56 K OBSOLETE ISDN: 64 K – 128 K Today’s options n n Modem: 56 K OBSOLETE ISDN: 64 K – 128 K Frame Relay: 56 K ++ Today High Speed Connections n n Cable, ADSL, Satellite. All are available at 5 Mb (2005) 25

Coming soon (1999) 26 Coming soon (1999) 26

(Today (2005 27 (Today (2005 27

Protocol Layers n A way for organizing structure of network § … Or at Protocol Layers n A way for organizing structure of network § … Or at least our discussion of networks n The idea: a series of steps 28

To: Yishay From: Vered Shipment 792 Pack. 1 of 3 To: Yishay From: Vered To: Yishay From: Vered Shipment 792 Pack. 1 of 3 To: Yishay From: Vered Shipment 792 Pack. 2 of 3 Pack. 3 of 3 To: Yishay From: Vered Handling To: Boston From: TLV Shipment 792 Pack. 3 of 3 To: Yishay From: Vered To: Boston Shipment 792 From: TLV Pack. 3 of 3 To: Yishay From: Vered Routing Transport Haifa JFK TLV BGN 29

To: Yishay From: Vered Shipment 792 Pack. 1 of 3 To: Yishay From: Vered To: Yishay From: Vered Shipment 792 Pack. 1 of 3 To: Yishay From: Vered Shipment 792 Pack. 2 of 3 To: Yishay From: Vered Shipment 792 Pack. 3 of 3 To: Yishay From: Vered To: Boston Shipment 792 From: TLV Pack. 3 of 3 To: Yishay From: Vered JFK N. Y. Boston 30

Layers: Person delivery of parcel Post office counter handling Ground transfer: loading on trucks Layers: Person delivery of parcel Post office counter handling Ground transfer: loading on trucks Peer entities Airport transfer: loading on airplane Airplane routing from source to destination each layer implements a service n via its own internal-layer actions n relying on services provided by layer below 31

Advantages of Layering n n explicit structure allows identification & relationship of complex system’s Advantages of Layering n n explicit structure allows identification & relationship of complex system’s pieces n layered reference model for discussion modularization eases maintenance & updating of system n change of implementation of layer’s service transparent to rest of system 32

Protocols n A protocol is a set of rules and formats that govern the Protocols n A protocol is a set of rules and formats that govern the communication between communicating peers n n n set of valid messages meaning of each message Necessary for any function that requires cooperation between peers 33

Protocols n A protocol provides a service n n For example: the post office Protocols n A protocol provides a service n n For example: the post office protocol for reliable parcel transfer service Peer entities use a protocol to provide a service to a higher-level peer entity n for example, truck drivers use a protocol to present post offices with the abstraction of an unreliable parcel transfer service 34

Protocol Layers n n n A network that provides many services needs many protocols Protocol Layers n n n A network that provides many services needs many protocols Some services are independent, But others depend on each other A Protocol may use another protocol as a step in its execution n n for example, ground transfer is one step in the execution of the example reliable parcel transfer protocol This form of dependency is called layering n Post office handling is layered above parcel ground transfer protocol. 35

Open protocols and systems n A set of protocols is open if n n Open protocols and systems n A set of protocols is open if n n A system that implements open protocols is called an open system International Organization for Standards (ISO) prescribes a standard to connect open systems n n protocol details are publicly available changes are managed by an organization whose membership and transactions are open to the public open system interconnect (OSI) Has greatly influenced thinking on protocol stacks 36

ISO OSI reference model n Reference model n n Service architecture n n formally ISO OSI reference model n Reference model n n Service architecture n n formally defines what is meant by a layer, a service etc. describes the services provided by each layer and the service access point Protocol architecture n n set of protocols that implement the service architecture compliant service architectures may still use noncompliant protocol architectures 37

The seven Layers Application Presentation Session Transport Network Data Link Physical End system Network The seven Layers Application Presentation Session Transport Network Data Link Physical End system Network Data Link Physical Intermediate system Application Presentation Session Transport Network Data Link Physical End system 38

The seven Layers - protocol stack data Application Presentation Session Transport Network Data Link The seven Layers - protocol stack data Application Presentation Session Transport Network Data Link Physical n. Session AH PH data SH TH Network Data Link Physical data NH data DH+data+DT bits Application Presentation Session Transport Network Data Link Physical and presentation layers are not so important, and are often ignored 39

Postal network n n n Application: people using the postal system Session and presentation: Postal network n n n Application: people using the postal system Session and presentation: chief clerk sends some priority mail, and some by regular mail ; translator translates letters going abroad. mail clerk sends a message, retransmits if not acked postal system computes a route and forwards the letters datalink layer: letters carried by planes, trains, automobiles physical layer: the letter itself 40

Internet protocol stack n n n application: supporting network applications n ftp, smtp, http Internet protocol stack n n n application: supporting network applications n ftp, smtp, http transport: host-host data transfer n tcp, udp network: routing of datagrams from source to destination n ip, routing protocols link: data transfer between neighboring network elements n ppp, ethernet physical: bits “on the wire” application transport network link physical 41

Protocol layering and data source M Ht M Hn Ht M Hl Hn Ht Protocol layering and data source M Ht M Hn Ht M Hl Hn Ht M destination application transport network Link physical M message Ht M Hn Ht M segment Hl Hn Ht M datagram frame 42

Physical layer n n Moves bits between physically connected end-systems Standard prescribes n n Physical layer n n Moves bits between physically connected end-systems Standard prescribes n n coding scheme to represent a bit shapes and sizes of connectors bit-level synchronization Internet n technology to move bits on a wire, wireless link, satellite channel etc. 43

Datalink layer n n (Reliable) communication over a single link. Introduces the notion of Datalink layer n n (Reliable) communication over a single link. Introduces the notion of a frame n set of bits that belong together n Idle markers tell us that a link is not carrying a n Begin and end markers delimit a frame n Internet frame n n n a variety of datalink layer protocols most common is Ethernet others are FDDI, SONET, HDLC 44

(. Datalink layer (contd n Ethernet (broadcast link) n n n also need to (. Datalink layer (contd n Ethernet (broadcast link) n n n also need to decide who gets to speak next n n need datalink-layer address n n end-system must receive only bits meant for it these functions are provided by Medium ACcess sublayer (MAC) Datalink layer protocols are the first layer of software Very dependent on underlying physical link properties Usually bundle both physical and datalink in hardware. 45

Network layer n n n Carries data from source to destination. Logically concatenates a Network layer n n n Carries data from source to destination. Logically concatenates a set of links to form the abstraction of an end-to-end link Allows an end-system to communicate with any other end -system by computing a route between them Hides idiosyncrasies of datalink layer Provides unique network-wide addresses Found both in end-systems and in intermediate systems 46

Network layer types n In datagram networks n n provides both routing and data Network layer types n In datagram networks n n provides both routing and data forwarding In connection-oriented network n n n separate data plane and control plane data plane only forwards and schedules data (touches every byte) control plane responsible for routing, callestablishment, call-teardown (doesn’t touch data bytes) 47

(. Network layer (contd n Internet n n n network layer is provided by (. Network layer (contd n Internet n n n network layer is provided by Internet Protocol (IP) found in all end-systems and intermediate systems provides abstraction of end-to-end link segmentation and reassembly packet-forwarding, routing, scheduling unique IP addresses can be layered over anything, but only best-effort service 48

(. Network layer (contd n At end-systems n n segments and reassemble n n (. Network layer (contd n At end-systems n n segments and reassemble n n primarily hides details of datalink layer detects errors At intermediate systems n participates in routing protocol to create routing tables n responsible forwarding packets n schedules the transmission order of packets n chooses which packets to drop 49

Transport layer n n Reliable end-to-end communication. creates the abstraction of an error-controlled, flow-controlled Transport layer n n Reliable end-to-end communication. creates the abstraction of an error-controlled, flow-controlled and multiplexed end-to-end link (Network layer provides only a ‘raw’ end-to-end service) n Some transport layers provide fewer services n n e. g. simple error detection, no flow control, and no retransmission Internet n TCP provides error control, flow control, multiplexing n UDP provides only multiplexing 50

(. Transport layer (contd n Error control n n n Flow control n n (. Transport layer (contd n Error control n n n Flow control n n GOAL: message will reach destination despite packet loss, corruption and duplication ACTIONS: retransmit lost packets; detect, discard, and retransmit corrupted packets; detect and discard duplicated packets match transmission rate to rate currently sustainable on the path to destination, and at the destination itself Multiplexes multiple applications to the same end -to-end connection n adds an application-specific identifier (port number) so that receiving end-system can hand in incoming packet to the correct application 51

Session layer n n n Not common Provides full-duplex service, expedited data delivery, and Session layer n n n Not common Provides full-duplex service, expedited data delivery, and session synchronization Internet n doesn’t have a standard session layer 52

(. Session layer (cont n Duplex n n Expedited data delivery n n if (. Session layer (cont n Duplex n n Expedited data delivery n n if transport layer is simplex, concatenates two transport endpoints together allows some messages to skip ahead in end-system queues, by using a separate low-delay transport layer endpoint Synchronization n allows users to place marks in data stream and to roll back to a prespecified mark 53

Presentation layer n n Usually ad hoc Touches the application data (Unlike other layers Presentation layer n n Usually ad hoc Touches the application data (Unlike other layers which deal with headers) n Hides data representation differences between applications n n n characters (ASCII, unicode, EBCDIC. ) Can also encrypt data Internet n n no standard presentation layer only defines network byte order for 2 - and 4 -byte integers 54

Application layer n n The set of applications that use the network Doesn’t provide Application layer n n The set of applications that use the network Doesn’t provide services to any other layer 55

Discussion n n Layers break a complex problem into smaller, simpler pieces. Why seven Discussion n n Layers break a complex problem into smaller, simpler pieces. Why seven layers? n n n Need a top and a bottom 2 Need to hide physical link; so need datalink 3 Need both end-to-end and hop-by-hop actions; so need at least the network and transport layers 5 56

Course outline 1 2 3 4 Introduction and Layering Data Link: Multi Access Hubs, Course outline 1 2 3 4 Introduction and Layering Data Link: Multi Access Hubs, Bridges and Routers Scheduling and Buffer Management 5 6 7 8 9 10 11 12 Switching Fabrics Routing Reliable Data Transfer End to End Window Based Protocols Flow Control Multimedia and Qo. S Network Security Distributed Algorithms 57