Скачать презентацию Climate Change — Climate Innovation Applying Joseph Schumpeter s Скачать презентацию Climate Change — Climate Innovation Applying Joseph Schumpeter s

7c122fd617436a1acd92d5e52af5d730.ppt

  • Количество слайдов: 71

Climate Change - Climate Innovation, Applying Joseph Schumpeter’s Economic Transformation Principles To A Major Climate Change - Climate Innovation, Applying Joseph Schumpeter’s Economic Transformation Principles To A Major Global Challenge, And Unprecedented Global Business Opportunities Presentation, Beijing, China, March 16, 2010. Philippe Roy, CMC, Canadian Association of Management Consultants All intellectual property rests with the author; Written consent required for use. Philippe. Roy. CMC@Sympatico. ca

Introductory Remarks A Great Privilege and Pleasure to Be in China, and to Speak Introductory Remarks A Great Privilege and Pleasure to Be in China, and to Speak in China, at this Important Point in History China Is A Leading Global Nation With Power To Influence Other Nations; This Influence is Needed Climate Change Is A Very Complex Issue, with Many Variables, and Many Unknowns World Must Continue to do Multidisciplinary Scientific Research on Climate Change World Must Seek Collaboration, Consensus, Confluence, Through Climate Innovation Unprecedented Global Business Opportunities Abound in Climate Innovation Wish To Share With You, Learn From You, With You

Climate Innovation Climate Change is a Global Threat Climate Innovation is Global Opportunity Climate Innovation Climate Change is a Global Threat Climate Innovation is Global Opportunity

Climate Innovation Climate Change Threatens Global Energy, Environment, Economics, Civilization In the Twenty-First Century Climate Innovation Climate Change Threatens Global Energy, Environment, Economics, Civilization In the Twenty-First Century

Climate Innovation Either We Fix Climate Change Or Climate Change Will Fix Us Climate Innovation Either We Fix Climate Change Or Climate Change Will Fix Us

Climate Innovation What Has Not Worked, What Might Work Copenhagen Conference on Climate Change, Climate Innovation What Has Not Worked, What Might Work Copenhagen Conference on Climate Change, 2009, World’s Best Meta Level Forum, Failed To Resolve Nations’ Divergent Interests in Energy, Environment, Economy Many Countries Were Not Adequately Prepared at Macro Level, Did Not Have A Substantive National Policy Framework To Deal With Climate Change

Climate Innovation What Has Not Worked, What Might Work Global Cities Contain 65% of Climate Innovation What Has Not Worked, What Might Work Global Cities Contain 65% of Global Population, and Corresponding Economic Activity. Could Create A Viable Meso Level Strategy, Using Schumpeter’s Principles, Plus Special Purpose Climate Innovation Business Clusters, and Stimulate New Clean Energy Sources and Technology Enterprises, Move to Next Industrial Revolution, the Post Carbon Economy

Climate Innovation Is The Systemic Use of Alternative Clean Renewable Energy Sources and Radical Climate Innovation Is The Systemic Use of Alternative Clean Renewable Energy Sources and Radical Technologies, To Replace Carbon Fuels, To Create the Next Industrial Revolution, And The Post Carbon Economy

Climate Innovation More Particularly, Climate Innovation Replaces a particular class of economic driver (old Climate Innovation More Particularly, Climate Innovation Replaces a particular class of economic driver (old energy), across many sectors using a particular economic engine with accelerator principles Focuses on a mix of innovation, technology, entrepreneurship as primary factors, supported by interfirm collaboration, strategic marketing, new business models, new conservation models Achieves outcomes of knowledge, skills, productivity, new innovation, new energy, new technologies, new enterprises, new competitive advantages, new capital, new wealth, new economic prosperity Saves the environment, the economy, civilization

Climate Innovation / Schumpeter Radical Innovation, Disruptive Technologies, Bold Entrepreneurship, Create New Businesses, Create Climate Innovation / Schumpeter Radical Innovation, Disruptive Technologies, Bold Entrepreneurship, Create New Businesses, Create New Wealth Joseph Schumpeter, 1883 -1950, Austrian Economist

Climate Innovation Who Was Joseph Schumpeter? Ph. D Economics University of Vienna 1906 Taught Climate Innovation Who Was Joseph Schumpeter? Ph. D Economics University of Vienna 1906 Taught Economics In Austrian Minister of Finance Bank President in Austria Held a Chair at University of Bonn, Germany Lectured at Harvard University, Moved to USA President of Econometric Society, USA Known for Contributions in Econometrics, Business Cycles, Economic Evolution of Society, Significance of Gold Standard in Monetary Systems, Entrepreneurship, Innovation Recognized by The Economist Magazine in 2009 as a “Champion of Entrepreneurship and Innovation”

Climate Innovation is Multi-Disciplinary, Collaboration is Essential Science, Environment, Geology, Atmospheric Chemistry and Physics, Climate Innovation is Multi-Disciplinary, Collaboration is Essential Science, Environment, Geology, Atmospheric Chemistry and Physics, Oceanography, Glaciology, Hydrology, Forestry, Agriculture, Operations Research Engineering, Civil, Electrical, Mechanical, Chemical, Nuclear, Environmental, Innovation, Urban Design, Transportation, Energy, Technologies, Systems Economics and Business, Entrepreneurship, Capital Markets, Competitiveness, Interfirm Collaboration, Knowledge, Skills, Policy, Strategy, Models, Interdisciplinary Critical Analysis

Climate Innovation Objective Implement Climate Innovation Create Special Purpose Advanced Clean Renewable Energy and Climate Innovation Objective Implement Climate Innovation Create Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters Harvest Unique, Abundant, Global Business Opportunities Globally Transition Quickly To Next Industrial Revolution, Post Carbon Economy

Climate Innovation / Schumpeter General Approach / Methodology Schumpeter’s Model is driven by Business Climate Innovation / Schumpeter General Approach / Methodology Schumpeter’s Model is driven by Business Opportunities, Free Markets, Radical Innovation, Disruptive Technologies, Bold Entrepreneurship, Productivity Improvement, New Competitive Advantages, New Jobs, New Capital, New Enterprises in New Economic Sectors, New Wealth Creation, New Economic Prosperity

Climate Innovation Context Limits To Growth Study, 1972 Criticized When Published. Extensively Peer Reviewed, Climate Innovation Context Limits To Growth Study, 1972 Criticized When Published. Extensively Peer Reviewed, Validated, Denmark, Early 1980 s Limits to Growth: The 20 -Year Update, 1993 Beyond The Limits, 30 Year Update Report, 2004 Causal Factors: Population Growth, Resource Depletion, Industrialization, Consumption, Create Pollution, Destroy Environment, Threaten Economy, Create Risk to Civilization Global Population in 1972 was 4 billion

Climate Innovation Global Challenge Anthropogenic Climate Change Began 1750 with Onset of Industrial Revolution Climate Innovation Global Challenge Anthropogenic Climate Change Began 1750 with Onset of Industrial Revolution Population Growth, Industrialization, Resource Exploitation, Urbanization, Agriculture, Buildings, Transportation, Consumption, High Use of Carbon Energy Leading to Increased CO 2, GHGs, Soot Global Population 2010 was 6. 7 billion

Climate Innovation Geometric Curve of Climate Change: Three Stages, Characteristics, Actual And Projected Estimates Climate Innovation Geometric Curve of Climate Change: Three Stages, Characteristics, Actual And Projected Estimates Stage One, 1750 -2010; CO 2, 280 -390 ppm; Avg. Global Temp Increase approx. 1 C, plus Polar Peaking x 2, x 3; Convergence of Climate Warming + Initial Tipping Points Emerging at end of Stage One, Provide Setting For Next Stage and Potential Acceleration Stage Two, 2010 - 2050 (est. ); CO 2, 390 -500/550 ppm (est. ). Avg. Temp Increase, 3 C (est. ), plus Polar Peaking x 2, x 3, Continued Industrial Activity + Population Increase + Tipping Points take world past Point of No Return (PNR). Trigger Points emerge (irregular weather, heat, fires, floods, drought, famine, penury), Provide Setting For Next Stage Three, 2050 - 2060 (est. ); CO 2, 550 – 650 ppm (est. ) Avg. Temp Increase, 5 C (est. ), Plus Polar Peaking, x 2, x 3. Continued Industrial Activity + Population Increase + Trigger Points take world to Chaos Factors, Catastrophic Consequences, Population Losses, Potential (Uncertain) New State of Global Environment, Weather Systems, All Major Changes Tend to New State.

Climate Innovation Current State of Geometric Curve of Climate Change Stage One has passed, Climate Innovation Current State of Geometric Curve of Climate Change Stage One has passed, Early Climate Change, Beginning of Tipping Points Stage Two now upon us, Accumulated Base of CO 2 in Atmosphere, Increasing Global Population, Continued Industrial, Economic Activity, Increasing Intensity, Continued Climate Change, Plus Positive Feedback Mechanisms, Cause Acceleration of Change

Climate Innovation Five (5) Positive Feedback Mechanisms Loss of Albedo Effect in Arctic Loss Climate Innovation Five (5) Positive Feedback Mechanisms Loss of Albedo Effect in Arctic Loss of Thermohaline Effect in Oceans Melting of Arctic Permafrost, Methane Release Bursting of Ocean Floor Caltrites, Methane Release Loss of Old Growth Equatorial Forests on Three Continents

Climate Innovation Atmospheric CO 2 in PPM is Highly Significant Long term historical stable Climate Innovation Atmospheric CO 2 in PPM is Highly Significant Long term historical stable level, 280 ppm, prior to on-set of Industrial Revolution, 1750 Current Level, 390 ppm, with 1 C average global temperature gain, Current carbon fuels usage rate produces a current increase of 2 ppm pa (actual), but on an increasing intensity accelerating curve, gaining 1 ppm pa per decade (est. ), driven by lagging effect, plus cumulative population, industrialization, urbanization economic factorial increases, plus intensity usage increases Estimated CO 2 ppm increase rates: 2010 -2020, 20 ppm; 2020 - 2030, 30 ppm; 2030 -40, 40 ppm; 2040 -50, 50 ppm. Net result, 2010 -2050, 140 ppm increase. Net aggregate measure, 530 ppm CO 2. Avg. Global Temp. Increase, 3 -5 C, plus Polar Peaking x 2, x 3. Keeling Curve baseline, plus factorial and intensity increases, plus positive feedback mechanisms, interacting, re-enforcing, accelerating

Climate Innovation Important Terms To Note Long Term Historical CO 2 Level, 280 ppm Climate Innovation Important Terms To Note Long Term Historical CO 2 Level, 280 ppm Recommended Long Term Stable CO 2 Level, 350 ppm Current CO 2 Level, 390 ppm Projected CO 2 Level, 450 ppm to 650 ppm of no changes Annual Increases in CO 2 in ppm, 2 pp, pa, currently, and rising Factorial and intensity drivers impacting Annual CO 2 ppm gains Avg. Global Temp. Change, to date, +1 C, increasing to +2 C, +++ Polar Peaking Temp. Increases, Factor x 2, x 3, Harbinger. Lagging Effect, CO 2 Emissions, To Atmosphere, To Current Measure, To Reporting Tipping Points Positive Feedback Mechanisms Trigger Points Chaos Factors Catastrophic Consequences Geometric Curve of Climate Change

Climate Innovation Set Firm Targets Now Or Risk Passing Point of No Return (PNR) Climate Innovation Set Firm Targets Now Or Risk Passing Point of No Return (PNR) Set Maximum Safe CO 2 level at 350 ppm Set Maximum Avg. Temp. Increase at 2 C Replace Carbon Fuels With Safe, Clean, Renewable Alternative Energy Sources, Radical Technologies ASAP Commit NOW to Rapid Transition To Next Industrial Revolution, Post Carbon Economy

Climate Innovation Possible Solutions Meta = International Treaty Macro = National Policy Frameworks Meta Climate Innovation Possible Solutions Meta = International Treaty Macro = National Policy Frameworks Meta = Cities and Economic Sectors Business Opportunities Micro = Individual Enterprise Business Opportunities Mini = Individual Consumer Clean Energy Opportunities

Climate Innovation Create New Market Place Mechanism Using Schumpeter’s Transformation Principles Special Purpose Advanced Climate Innovation Create New Market Place Mechanism Using Schumpeter’s Transformation Principles Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters Add Five (5) Adjunct Functions Bring Key Stakeholders Together to Interact Create Concentration, Synergy, Acceleration

Climate Innovation Add Five (5) Adjunct Functions To Support New Special Purpose Business Cluster Climate Innovation Add Five (5) Adjunct Functions To Support New Special Purpose Business Cluster Favorable Conditions Competitiveness and Interfirm Collaboration Advanced Market Place Leadership Principles Global Connectedness Via Internet Learning Organization Sharing Global Best Practices and Challenging Further Success Stories

Climate Innovation Bring Key Stakeholders to New Special Purpose Business Clusters Large, medium, small, Climate Innovation Bring Key Stakeholders to New Special Purpose Business Clusters Large, medium, small, micro, mini enterprises Innovation funding agencies Scientific, engineering, technology R&D agencies Collaborative financial institutions, development banks Accessible full spectrum capital Universities, colleges for knowledge and skills Entrepreneurship centers to drive enterprises through multiple stages of development Rapid commercialization agencies and mechanisms Public-Private-Partnership Formation Agencies Trade and export financing agencies Govt Depts, Policy, Industry, Science, Econ. Dev. , Labour, Foreign Affairs, Defense, Finance

Climate Innovation Form Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Climate Innovation Form Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters Assemble Key Stakeholder Participants Define Charter, Mandate, Mission, Objectives Commit Absolutely to Rapid Transition To Next Industrial Revolution, Creating the Post Carbon Economy Define Priority Research, Radical Innovation, Disruptive Technologies, Bold Entrepreneurship Projects, Critical Timing Implement Five (5) Critical Adjunct Factors: Favourable Conditions, Competitiveness / Interfirm Collaboration; Market Place Leadership Practices; Global Connectedness; Learning Organization Principles Plan to Deal Strategically to Innovate Massively in Five (5) Major Categories: Alternative Clean Renewable Energy Sources, Radical New Clean Energy Technologies, New City and Economic Sector Clean Strategies and Models, New Individual Enterprise Clean Energy Models, New Conservation and Consumption Models

Climate Innovation Form Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Climate Innovation Form Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters Focus on Specific Priority High Value Projects, and also Low Hanging Fruit Immense Capital Required, 1 -2% of GDP now, or wait 5 -10 years and then have to contribute 5 -10% of GDP and risk passing PNR. Best to apply Carbon Price or Carbon Tax now to help to raise capital to finance big projects, strategic clean energy technology changes now, e. g. , Nuclear Fusion, Thorium Plants, Intelligent Electricity Grids, Massive Solar Thermal, Massive Geothermal, Massive Creation of Large Buildings as Net Energy Generators, Massive Off Grid Housing and Physical Plant, etc. Get Started, Meet Regularly, Discuss Advances on Priorities, Brain Storm, Innovate. Work Hard and Fast Network Globally, Share, Innovate, Challenge, Leapfrog “Do” Collaboration, Consensus, Confluence very seriously Harvest Early Rewards, Profits, Competitive Advantages

Climate Innovation Scalability Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Climate Innovation Scalability Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters Are Scalable and Flexible, May Be Implemented in Smaller Cities and Regions

Climate Innovation Essential Dynamics of Successful Special Purpose Business Clusters Concentration Synergy Acceleration Climate Innovation Essential Dynamics of Successful Special Purpose Business Clusters Concentration Synergy Acceleration

Climate Innovation Strategies Innovation Policy / Objectives Innovation Systems / Funding / Infrastructure Technology Climate Innovation Strategies Innovation Policy / Objectives Innovation Systems / Funding / Infrastructure Technology Road Maps Competitive Analysis/ SWOT Analysis Innovation Culture

Climate Innovation Disruptive Technologies Strategies Significance of Disruptive Examples of Past Disruptive Technologies Future Climate Innovation Disruptive Technologies Strategies Significance of Disruptive Examples of Past Disruptive Technologies Future Requirements in Disruptive Technologies Forcing Techniques

Climate Innovation Bold Entrepreneurship Strategies Critical Success Factor For Economic Change, Market Based Growth Climate Innovation Bold Entrepreneurship Strategies Critical Success Factor For Economic Change, Market Based Growth Multiple Scales of Enterprises Multiple Stages of Development Knowledge, Skills, Financing, Infrastructure Key to Creating Large Enterprises, Strong and Diverse Economic Sectors

Climate Innovation Vital Role Of Small Business / Entrepreneurship In Innovation, Technology, Change, Growth, Climate Innovation Vital Role Of Small Business / Entrepreneurship In Innovation, Technology, Change, Growth, in National Economies SMEs contribute 25% of GDP in Developed Nations SMEs are very significant innovators (notably high tech sectors) SMEs can create and use new technologies very significantly (non high tech sectors can lag) SMEs are wealth creators, job creators SMEs can grow into MNEs, 9 stages of growth

Climate Innovation Vital Role Of Small Business / Entrepreneurship In Innovation, Technology, Change, Growth, Climate Innovation Vital Role Of Small Business / Entrepreneurship In Innovation, Technology, Change, Growth, in National Economies Critical Success Factors are: *Knowledge, *Skills, Competencies, Dynamic Teams *Business Strategy, Specialization, Leveraging *Innovation Systems *Technology Road Maps *Business Incubators, Networks, Clusters *Intellectual Property *Access to Full Spectrum Financing

Climate Innovation Vital Role Of Small Business / Entrepreneurship In Innovation, Technology, Change, Growth, Climate Innovation Vital Role Of Small Business / Entrepreneurship In Innovation, Technology, Change, Growth, in National Economies Critical Success Factors (cont’d): *Marketing, Exporting Opportunities and Drive *Developing, Increasing Competitive Advantages *Identifying Gazelles, Giraffes *Documenting, Analyzing Market Leader Success Stories Per Sector, Sub-Sector *Modeling on Success of High Performing Firms *Professional Mentoring For Growth, Acceleration *Imagination, Focus, Requirements *Can Do, Out Perform Attitude

Climate Innovation Vital Role Of Small Business / Entrepreneurship In Innovation, Technology, Change, Growth, Climate Innovation Vital Role Of Small Business / Entrepreneurship In Innovation, Technology, Change, Growth, in National Economies Climate Innovation, Transition to Next Industrial Revolution, Post Carbon Economy, Requires Full Strategic Development and Deployment of SMEs Focus Must be on Schumpeter’s Transformation Principles: Radical Innovation, Disruptive Technologies, Bold Entrepreneurship; Plus Five Critical Adjunct Factors Successful, Leading Nations, will invest 1 -2% of GDP p. a. in Climate Innovation (Stern says 2% now), including a particular focus on SMEs which are a growth engine

Climate Innovation Favorable Conditions 1 -2% of GDP (minimum) spent on Climate Innovation p. Climate Innovation Favorable Conditions 1 -2% of GDP (minimum) spent on Climate Innovation p. a. Policy considerations, e. g. , carbon pricing or carbon tax Innovation tax credits for demonstrable pay-off innovation at point of market entry linked to S-curve Innovation systems Science / engineering / technology research institutes doing R&D Technology road maps to guide future opportunities Advanced educational institutions to provide specialized knowledge and skills Entrepreneurship centers to train entrepreneurs through multiple stages of enterprise development Collaborative financial institutions providing ready access to full spectrum capital S-curve drivers to drive innovation climate Intellectual property management agencies Rapid commercialization mechanisms Export development agencies A national culture of collaboration and competitiveness

Climate Innovation Favourable Tax Conditions To Support Special Purpose Climate Innovation Business Clusters 1 Climate Innovation Favourable Tax Conditions To Support Special Purpose Climate Innovation Business Clusters 1 -2% of GDP p. a. investment in Climate Innovation; some countries spend more than this. Stern recommends 2%. If 5 -10 year delay in rapid progress with Climate Innovation, then 5 -10% of GPD p. a. may be req’d to deal with extensive degradation within next decade Carbon Pricing, Carbon Tax, beginning at a 20% consumption tax, and increasing annually for five years up to 100% of pre-tax market pricing Business Innovation Tax Credits for new energy and technology products, for demonstrable products at market entry, relative to a specifically identifiable S-curve baseline Business Income tax credits for creation of new energy and technology product lines, to last for five years Consumer tax credits for residential energy and environment specific retrofits with new energy sources and technologies, to last for five years Consumer tax credits for totally off-grid residential housing, to last ten years Consumption taxes on purchase of large vehicles Significant daily operation and parking charges for vehicles Significant surtaxes on two or more vehicles per family

Climate Innovation Positive Incentives Re: Climate Innovation Objective Information, Concentrated Education Programs for Corporate Climate Innovation Positive Incentives Re: Climate Innovation Objective Information, Concentrated Education Programs for Corporate Executives, Boards of Directors, SMEs, on Climate Innovation Corporate Social Responsibility (CSR) Codes on Climate Innovation Mandatory Annual Reporting and AGM Reporting Against Performance Criteria For Climate Innovation Rewards and Recognition Program for Business Sector Auditing Down the Road, With Sanctions for Failure to Comply (Possible WTO Sanctions for Non Green Enterprises, Sectors, Countries in Future, at Least Equal to a Carbon Tax, Possibly More)

Climate Innovation Competitiveness / Interfirm Collaboration Promotes additional entrepreneurship relationships and undertakings Enhances scale, Climate Innovation Competitiveness / Interfirm Collaboration Promotes additional entrepreneurship relationships and undertakings Enhances scale, scope, speed of entrepreneurship undertakings Produces externalities of: (a) increased knowledge, skills, experience, teams (b) increased productivity, (c) new innovation, intellectual property (d) quicker time to market, (e) quicker earned profits, (f) new competitive advantages, (g) new competitiveness platforms for round two, three, four, five, up to ten rounds, with an average of one round per annum, (h) but with possibility of quantum shift if new disruptive technologies create major new platforms of competitiveness Contributes to increased profits and re-investment, producing increased forward momentum

Climate Innovation / Schumpeter Nearly Two Dozen Forms Of Interfirm Collaboration Available SME forward Climate Innovation / Schumpeter Nearly Two Dozen Forms Of Interfirm Collaboration Available SME forward and backward linkage learning groups Micro, Mini, SME informal self-help learning groups Third generation business incubators (L. Hewick; P. Roy, Canada) Flexible business networks (S. Rosenfeld, USA; P. Roy, Canada) Business clusters (G. Beccatini, Italy; P. Roy, Canada) Dynamic Licensing Strategic Alliances (two parties) Joint Ventures (multiple parties) Export Consortia (twenty to fifty enterprises) Old nurse log generators Spinoff ventures Enterprise linked mentoring Local Supply Chains, International Value Chains Local Economic Development Cross-Sectoral Learning Orgs Advanced Technology Industry Sector Leadership Groups Public-Private-Partnerships Multi-Sector-Enterprise-Function-Partner, Dynamic Regional Economic Hubs

Climate Innovation Advanced Market Place Leadership Strong, Highly Visible, Industry leadership champions Demonstration projects Climate Innovation Advanced Market Place Leadership Strong, Highly Visible, Industry leadership champions Demonstration projects of new energy, new technologies Government procurement Identify and celebrate market leaders across economic sectors, ie, high performing, high growth enterprises, including MNEs, SMEs, gazelles, giraffes, etc. Business case analysis, investment payback analysis Success stories Analysis of critical success factors Leveraging effect of modeling competitiveness, success Replicating the entrepreneurial DNA of successful, high growth enterprises with advanced training to others (lessons learned) Recognition and rewards Create contagion, leading to growth, leading to a market leadership critical mass

Climate Innovation International Connectedness / Internet Linkages, Globally Link Global Cities which are implementing Climate Innovation International Connectedness / Internet Linkages, Globally Link Global Cities which are implementing Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters Tele-conference, share progress, resolve issues Focus on Collaboration, Consensus, Confluence

Climate Innovation Five (5) Key Areas To Innovate, In The Special Purpose Advanced Clean Climate Innovation Five (5) Key Areas To Innovate, In The Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters New alternative clean renewable energy sources Innovative clean renewable energy technologies Innovative clean renewable energy economic sectors and city strategies Innovative clean renewable energy and innovative technologies business enterprise models Innovative conservation strategies

Climate Innovation Fifty (50) Big Climate Innovation Opportunities Nuclear Fusion (vs. current nuclear fission) Climate Innovation Fifty (50) Big Climate Innovation Opportunities Nuclear Fusion (vs. current nuclear fission) Clean Nuclear Plants Using Thorium Geothermal, Short Holes for Residential Geothermal, very deep holes for institutions, cities Hydro-electric where natural assets exist Ocean Wave, Tide and Current Turbines Wind Turbines and Wind Turbine Farms High Altitude Wind Turbines Solar Thermal Collectors High Altitude Solar Concentrators Photovoltaic Panels for Buildings Smart Urban, Regional Electricity Grids Direct Current Lines (vs. current AC lines) Photonics Light Energy Transmission For Systems, Data, Etc. Large Urban Buildings As Net Energy Generators Improve Productivity of All Economic Sectors by 30%

Climate Innovation Fifty (50) Big Climate Innovation Opportunities Off-grid, smart clean energy self sufficient Climate Innovation Fifty (50) Big Climate Innovation Opportunities Off-grid, smart clean energy self sufficient housing More efficient home appliances, particularly for hot water heating Alternative high efficiency lighting Develop High Efficiency, High Effectiveness HVAC Systems Efficient Urban Design, Multiple Multifunctional Nodes, Tightly Limit Ad Hoc Expansion of City Peripheries, Hold Boundaries Firm Rapid Urban Transit System High Speed Intercity Trains Discourage use of individual vehicles; charge fees Hydrogen Fuels Biofuels from post agricultural byproducts Pyrology to create linked heating, industrial applications Co-Generation Energy Plants Rechargeable Electric Batteries for Vehicles Convert Diesel Trucks and Buses to Natural Gas Alternative High Efficiency Aviation Fuels

Climate Innovation Fifty (50) Climate Innovation Opportunities. Algae Production and Farming to Consume CO Climate Innovation Fifty (50) Climate Innovation Opportunities. Algae Production and Farming to Consume CO 2 in Oceans Phytoplankton Farming to Consume CO 2 in Water Create microbic life to absorb CO 2 in land, agriculture, forests Create 100 -200 km agricultural zones near cities Create urban gardens, roof top gardens Bio-engineer pastured animal guts to replicate kangaroo guts to eliminate gas, methane production Develop Grains and Crops to survive in above +3 C to +6 C environments Vegetable protein, and protein combining diets, to replace meat protein Create Synthetic Protein Foods Create Clean Water Systems Create Clean Sewage Systems, Process, Eliminate Heavy Metals, Recycle Create Clean Urban Composting, with Carbon, Nitrogen Cycles Synergy Plant large urban forests, many trees as huge urban carbon sinks Bury persons beneath a new tree to recycle human body respectfully and usefully

Climate Innovation Fifty (50) Climate Innovation Opportunities. • Carbon Capture Sequestration and Deep Earth Climate Innovation Fifty (50) Climate Innovation Opportunities. • Carbon Capture Sequestration and Deep Earth Storage, Must be Chemically Bound with A Salt or in Equivalent Fixed State, Not Gaseous State, and Full Risk Assessment Must be Carried Out. Absolute Five Year Limitation on this Strategy While other “Get Off Carbon” Energy Sources and Technologies are Implemented • Carbon Trading Permits with Tight and Quickly Reducing Targets and Unused Credits Trading Systems; contains implicit or explicit price for carbon, following Sir Nicholas Stern principles; to complement CCS / DES Strategy. Absolute Five Year Limitation on this Strategy While other “Get Off Carbon” Energy Sources and Technologies are Implemented • Developed Countries Support Development of Developing Countries with well defined strategies (see new slide) Atmospheric CO 2 Extraction Technologies (further R&D required) Continued Science, Engineering, Technology, Agriculture, Transportation, Manufacturing, Energy, etc. , R&D to find solutions to complex problems • •

Climate Innovation Fundamental Symbiosis of Energy, Economics, Innovation, Technology, Entrepreneurship, Civilization Energy Essential For Climate Innovation Fundamental Symbiosis of Energy, Economics, Innovation, Technology, Entrepreneurship, Civilization Energy Essential For Civilization To Thrive Environment Essential For Civilization To Live Economics Essential For Civilization To Prosper Innovation, Technology, Entrepreneurship, Essential for Civilization to Progress

Climate Innovation Dynamic Market Place in Flux, Transition Demand Side Supply Side Nexus Strategy Climate Innovation Dynamic Market Place in Flux, Transition Demand Side Supply Side Nexus Strategy Change

Climate Innovation Developed and Developing Countries Share Great Global Challenge Developed Countries Created Climate Climate Innovation Developed and Developing Countries Share Great Global Challenge Developed Countries Created Climate Change Initially Developing Countries Growing Rapidly, Want Same Standard of Living How to Resolve? Must Resolve, or Destroy Environment, Civilization

Climate Innovation Developed Nations Helping Developing Nations, Co-Invest, Co-Develop Critical Infrastructure Universities, Polytechniques, Community Climate Innovation Developed Nations Helping Developing Nations, Co-Invest, Co-Develop Critical Infrastructure Universities, Polytechniques, Community Colleges For Both Men and Women Science and Engineering Research Institutes Central Development Bank For New Enterprises, to Include Micro Lending for Micro Enterprises and Women’s and Youth Enterprises Entrepreneurship Centres and Entrepreneurship Training Innovation Systems Core Modern Manufacturing Capacity Priority Alternative Energy and Technology Projects Marketing, International Trade Support Scalable Development of Special Purpose Business Clusters Developed Country Senior Experienced Program Developers, Entrepreneurs, to Co-Lead Projects, Develop Local Leadership, Entrepreneurship Capacity Invest 1 -2% of GDP p. a. for 10 -20 years, monitor progress closely No Direct Cash Donations; Must be Managed Closely By Developed Nations

Climate Innovation Global Sustainability Absolutely Critical Current global crisis emerged as world grew from Climate Innovation Global Sustainability Absolutely Critical Current global crisis emerged as world grew from 4 billion to 6. 7 billion (1972 -2010) Global Model of Continual Economic Growth Drove Global Crisis, Limits To Growth Anthropogenic Economic Activity, Bad Energy Use, Drove Climate Change World CANNOT sustain 8, 9, 10, 12 billion population World CANNOT sustain same Continual Economic Growth Model World CANNOT sustain Climate Change

Climate Innovation Global Sustainability Absolutely Critical Need to manage global population growth quickly Need Climate Innovation Global Sustainability Absolutely Critical Need to manage global population growth quickly Need to set much lower economic expectations for all countries, developed and developing Need to define other economic models, other than continual economic growth Need to set Sustainability as main Economic, Environment, Energy, Civilization Objective All nations must seek common understanding for Collaboration, Consensus, Confluence for Global Sustainability, or Civilization will Risk Extinction in 21 st Century

Climate Innovation One World Collaboration, Consensus, Confluence Developed and Developing Nations Sustainability, Balance, Well-Being Climate Innovation One World Collaboration, Consensus, Confluence Developed and Developing Nations Sustainability, Balance, Well-Being

Climate Innovation Cost of Climate Innovation, Transition to Next Industrial Revolution, Post Carbon Economy Climate Innovation Cost of Climate Innovation, Transition to Next Industrial Revolution, Post Carbon Economy Suggested Annual Government Contribution of 1 -2% of GDP p. a. If Delay 10 years, then 5 -10% of GDP required, But very high risk of passing PNR Best to move very quickly To Support Developing Nations, Developed Nations should give 1 -2% of GDP p. a.

Climate Innovation Twelve (12) Critical Success Factors Understand Seriousness of Climate Change Understand Great Climate Innovation Twelve (12) Critical Success Factors Understand Seriousness of Climate Change Understand Great Potential of Climate Innovation Understand Vital Driving Importance of Bold Entrepreneurship Understand Strength of Clusters, Networks, Incubators, Alliances Understand Developed and Developing Nations Understand Need For Global Sustainability Understand Joseph Schumpeter’s Economic Transformation Principles Thoroughly Understand Importance of Rapid Transition to Next Industrial Revolution, and Post Carbon Economy Understand Global Business Opportunity of Climate Innovation Move ASAP To Create Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters Contribute 1 -2% of GDP p. a. for Climate Innovation Contribute 1 -2% of GDP p. a. to Assist Developing Nations

Climate Innovation Conclusions Schumpeter’s Economic Transformation Principles, plus five adjunct factors, CAN work very Climate Innovation Conclusions Schumpeter’s Economic Transformation Principles, plus five adjunct factors, CAN work very effectively, through the new market place mechanism, Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters

Climate Innovation Conclusions New Market Place Mechanism can drive the creation of the Next Climate Innovation Conclusions New Market Place Mechanism can drive the creation of the Next Industrial Revolution, the Post Carbon Economy Any Nation, any Global City, Can Do This Think Globally, Act Locally Be a Global Entrepreneur Save Civilization

Climate Innovation Suggested Activities For Students 1. Read the two documents: Backgrounder, and Overview Climate Innovation Suggested Activities For Students 1. Read the two documents: Backgrounder, and Overview Prior to PPT. 2. Google and review Limits To Growth Report, 1972, and subsequent updates. 3. Google and review United Nations International Panel on Climate Change 2007 Report. 4. Google and review what is the current controversy about the UNIPCC and its work. 5. Google and review Joseph Schumpeter, and his economic transformation principles. 6. Read Stern Report on Climate Change, Intervention Strategies. 7. Understand the proposed new market place mechanism, Special Purpose Advanced Clean Renewable Energy and Radical Technology Climate Innovation Business Clusters. Also understand the five (5) critically important adjunct functions. 8. Form a team of fellow students, and prepare a brief point form summary of a plan to create, develop, implement, and drive, this new market place mechanism and the five adjunct functions, in a major Chinese city.

Climate Innovation Suggested Activities For Students 9. In addition to the substance of your Climate Innovation Suggested Activities For Students 9. In addition to the substance of your plan, consider the cost of implementing over five years, using high level general estimates with a reference point to some other significant indicators. In addition, create some "selling points" to help convince key stakeholders to "buy in", give their commitment. In addition, you must anticipate resistance, try to anticipate the nature of the resistance, and how to overcome this resistance with good intellectual points, and with business strategy. Can you think of how to present your overall solution as a "Win - Win" proposition? This is a Meso level strategy.

Climate Innovation Suggested Activities For Students 10. What point form items should go into Climate Innovation Suggested Activities For Students 10. What point form items should go into a national policy framework on Climate Change – Climate Innovation? . List the points, discuss in teams, refine the list. This is a Macro level strategy. 11. What point form items should go into an international treaty on Climate Change – Climate Innovation? List the points, discuss them in teams, refine the list. This is a Meta level strategy. 12. Consider creating the Chinese University Students’ Global University Students Challenge, to undertake in quick response, point form, to follow similar process, points 1 -10, with outputs being points 8, 9, 10, by July 15, 2010, in order to submit to the G 8 Meeting in Canada on July 19, 2010, with copy to Toronto Globe and Mail, Canada’s National Newspaper, and TVO Public Broadcasting (Television) and host Steve Paikin.

Climate Innovation Suggested Activities For Students 12. (Cont’d) Consider inviting Oxford, Cambridge, Harvard, MIT, Climate Innovation Suggested Activities For Students 12. (Cont’d) Consider inviting Oxford, Cambridge, Harvard, MIT, Polytechnique (Paris), Stockholm School of Economics. University of Toronto (Professors R. Martin, Dean of Business, D. Wolfe, Policy, M. Gertler, Urban Geography), University of Waterloo, Canada (Professor Thomas Homer Dixon). 13. Chinese MBA Students at top Chinese Business School, should consider creating the World MBA Students Climate Change - Climate Innovation Annual Challenge Games, in Beijing, and invite one team from each of twenty (20) global MBA Schools to participate, beginning in September 2010. Chinese MBA students would become global leaders, and the world’s top MBA Schools would send teams. Everyone would learn a lot.

Climate Innovation Chinese MBA Students Could Become Global Leaders By taking this unique global Climate Innovation Chinese MBA Students Could Become Global Leaders By taking this unique global initiative, Chinese University MBA Students would put themselves on a world stage, as highly intelligent, innovative, entrepreneurial, seeking global business opportunities, caring about Climate Change – Climate Innovation, and world class leaders. A global network of Collaboration, Consensus, Confluence could be set up. International Best Practices and Success Stories could be documented and shared for all of civilization to benefit. This is an opportunity not to be missed.

Climate Innovation Essential for Chinese MBA Students and Environmental Science Students to Collaborate on Climate Innovation Essential for Chinese MBA Students and Environmental Science Students to Collaborate on Special Initiatives Need Each Other Potential for Success will be Greatly Increased by Close Collaboration

Be The Change You Would See in The World Mahatma Gandhi, Former Prime Minister Be The Change You Would See in The World Mahatma Gandhi, Former Prime Minister of India

Additional Professional Management Consulting Services Available Presentations, Training Seminars, For Target Groups of Business, Additional Professional Management Consulting Services Available Presentations, Training Seminars, For Target Groups of Business, Government, Academic and Economic / Finance Officials Policy Frameworks, Business Models, Business Strategies, Re: Climate Change – Climate Innovation Developing Implementing Climate Innovation Strategies, including Special Purpose Advanced Clean Energy and Technology Climate Innovation Business Clusters Business Incubators, Business Networks, Business Clusters SME / Entrepreneurship Growth Strategies General Management Consulting, Review of Current State, Strategic Planning, Change Management Collaboration, Consensus, Confluence.

Philippe Roy, CMC Member, Canadian Association of Management Consultants; Member, The Competitiveness Institute; Member, Philippe Roy, CMC Member, Canadian Association of Management Consultants; Member, The Competitiveness Institute; Member, The Globe Foundation; Formerly, Director, VP, President, The Strategic Planning Forum. Has worked in business and government sectors, as systems analyst, financial analyst, capital programs analyst, management consultant, comprehensive auditor, senior policy advisor. Retired. Professional Management Consultant since 1974. Areas of practice: Policy, Strategy, Marketing, Entrepreneurship and Small Business, Competitiveness, Innovation, Productivity, Business Incubators, Business Networks, Business Clusters, Climate Change – Climate Innovation Strategies, Comprehensive Audit. Conference Speaker in Canada and internationally for past two decades. Awards for leadership and contribution, business writing, from The Strategic Planning Forum, The Financial Management Institute, and The Canadian Association of Management Consultants. B. Comm. , University of Ottawa. CMC, Canadian Association of Management Consultants, specialization in strategic planning. Age 65, married, private interests, skiing, canoeing, golf, art, cooking, travel.