Скачать презентацию CHAPTER 12 WIRELESS MESH NETWORKS I F Akyildiz Скачать презентацию CHAPTER 12 WIRELESS MESH NETWORKS I F Akyildiz

1bbd49c92d8c79e80f7172efd78da7af.ppt

  • Количество слайдов: 159

CHAPTER 12: WIRELESS MESH NETWORKS I. F. Akyildiz Broadband & Wireless Networking Laboratory School CHAPTER 12: WIRELESS MESH NETWORKS I. F. Akyildiz Broadband & Wireless Networking Laboratory School of Electrical and Computer Engineering Georgia Institute of Technology Tel: 404 -894 -5141; Fax: 404 -894 -7883 Email: ian@ece. gatech. edu Web: http: //www. ece. gatech. edu/research/labs/bwn

Wireless Mesh Networks I. F. Akyildiz, et. al. , “Wireless Mesh Networks; A Survey”, Wireless Mesh Networks I. F. Akyildiz, et. al. , “Wireless Mesh Networks; A Survey”, Computer Networks Journal, March 2005. n The term 'wireless mesh networks' describes wireless networks in which each node can communicate directly with one or more peer nodes. n The term 'mesh' originally used to suggest that all nodes were connected to all other nodes, but most modern meshes connect only a sub-set of nodes to each other. n Still, this is quite different than traditional wireless networks, which require centralized access points to mediate the wireless connection. n Even two 802. 11 b nodes that are side-by-side in infrastructure mode must send data to each other through the access point. IFA’ 05 ECE 6610 2

Wireless Mesh Networks n Nodes are comprised of mesh routers and mesh clients. n Wireless Mesh Networks n Nodes are comprised of mesh routers and mesh clients. n Each node operates not only as a host but also as a router, forwarding packets on behalf of other nodes that may not be within direct wireless transmission range of their destinations. n A WMN is dynamically self-organized and self-configured, with the nodes in the network automatically establishing and maintaining mesh connectivity among themselves IFA’ 05 ECE 6610 3

Wireless Mesh Networks n Extend the range and link robustness of existing Wi-Fi’s by Wireless Mesh Networks n Extend the range and link robustness of existing Wi-Fi’s by allowing mesh-style multi-hopping n A user finds a nearby user and hops through it - or possibly multiple users - to get to the destination n Every user becomes a relay point or router for network traffic n Mesh networks consist of multiple wireless devices equipped with COTS 802. 11 a/b/g cards that work in ad-hoc fashion n 802. 11 capable antennas placed on rooftops allow a large area coverage IFA’ 05 ECE 6610 4

Network Architecture n WMNs consist of two types of nodes: Mesh Routers and Mesh Network Architecture n WMNs consist of two types of nodes: Mesh Routers and Mesh Clients. n A wireless mesh router contains additional routing functions to support mesh networking. n It is equipped with multiple wireless interfaces built on either the same or different wireless access technologies. n A wireless mesh router can achieve the same coverage as a conventional router but with much lower transmission power through multi-hop communications. IFA’ 05 ECE 6610 5

WMN COMPONENTS Examples of mesh routers based on different embedded systems: (a) Power. PC WMN COMPONENTS Examples of mesh routers based on different embedded systems: (a) Power. PC and (b) Advanced Risc Machines (ARM) IFA’ 05 ECE 6610 6

WMN COMPONENTS Examples of mesh clients: (a) Laptop, (b) PDA, IFA’ 05 (c) Wi-Fi WMN COMPONENTS Examples of mesh clients: (a) Laptop, (b) PDA, IFA’ 05 (c) Wi-Fi IP Phone and (d) Wi-Fi RFID Reader. ECE 6610 7

WMN COMPONENTS IFA’ 05 ECE 6610 8 WMN COMPONENTS IFA’ 05 ECE 6610 8

WMN COMPONENTS IFA’ 05 ECE 6610 9 WMN COMPONENTS IFA’ 05 ECE 6610 9

Wireless Mesh Networks n Conventional nodes (e. g. , desktops, laptops, PDAs, Pocket. PCs, Wireless Mesh Networks n Conventional nodes (e. g. , desktops, laptops, PDAs, Pocket. PCs, phones, etc. ) equipped with wireless network interface cards (NICs) can connect directly to wireless mesh routers. n Customers without wireless NICs can access WMNs by connecting to wireless mesh routers through, e. g. , Ethernet. n Thus, WMNs will greatly help users be always-on-line anywhere anytime. IFA’ 05 ECE 6610 10

Wireless Mesh Networks n Moreover, the gateway/bridge functionalities in mesh routers enable the integration Wireless Mesh Networks n Moreover, the gateway/bridge functionalities in mesh routers enable the integration of WMNs with various existing wireless networks such as cellular, wireless sensor, wireless-fidelity (Wi-Fi), worldwide interoperability for microwave access (Wi. MAX) networks. n Consequently, through an integrated WMN, users of existing networks are provided with otherwise impossible services of these networks. IFA’ 05 ECE 6610 11

Network Architecture Classification 1. INFRASTRUCTURE MESHING 2. CLIENT MESH NETWORKING 3. HYBRID MESH NETWORKING Network Architecture Classification 1. INFRASTRUCTURE MESHING 2. CLIENT MESH NETWORKING 3. HYBRID MESH NETWORKING IFA’ 05 ECE 6610 12

INFRASTRUCTURE MESHING n This includes mesh routers that form an infrastructure for clients that INFRASTRUCTURE MESHING n This includes mesh routers that form an infrastructure for clients that connect to them. n This can be built using various types of radio technologies n The mesh routers form a mesh of self-configuring, self-healing links among themselves. n With gateway functionality, mesh routers can be connected to the Internet. IFA’ 05 ECE 6610 13

INFRASTRUCTURE MESHING. n It provides backbone for conventional clients and enables integration of WMNs INFRASTRUCTURE MESHING. n It provides backbone for conventional clients and enables integration of WMNs with existing wireless networks, through gateway/bridge functionalities in mesh routers. n Conventional clients with Ethernet interface can be connected to mesh routers via Ethernet links. n For conventional clients with the same radio technologies as mesh routers, they can directly communicate with mesh routers. IFA’ 05 ECE 6610 14

INFRASTRUCTURE MESHING IFA’ 05 ECE 6610 15 INFRASTRUCTURE MESHING IFA’ 05 ECE 6610 15

INFRASTRUCTURE MESHING n If different radio technologies are used, clients must communicate with the INFRASTRUCTURE MESHING n If different radio technologies are used, clients must communicate with the base stations that have Ethernet connections to mesh routers. n These are the most commonly used. n For example, community and neighborhood networks can be built using infrastructure meshing. n The mesh routers are placed on the roof of houses in a neighborhood, which serve as access points for users inside the homes and along the roads. n Typically, two types of radios are used in the routers, i. e. , for backbone communication and for user communication, respectively. n The mesh backbone communication can be established using long-range communication techniques including directional antennas. IFA’ 05 ECE 6610 16

Client WMNs n Client meshing provides peer-to-peer networks among client devices. n Client nodes Client WMNs n Client meshing provides peer-to-peer networks among client devices. n Client nodes constitute the actual network to perform routing and configuration functionalities as well as providing end-user applications to customers. n A mesh router is not required for these types of networks. n A packet destined to a node in the network hops through multiple nodes to reach the destination. n They are formed using one type of radios on devices. n Moreover, the requirements on end-user devices is increased when compared to infrastructure meshing; the end-users have to perform additional functions such as routing and self-configuration. IFA’ 05 ECE 6610 17

Client WMNs IFA’ 05 ECE 6610 18 Client WMNs IFA’ 05 ECE 6610 18

HYBRID WMNs n This architecture is the combination of infrastructure and client meshing. n HYBRID WMNs n This architecture is the combination of infrastructure and client meshing. n Mesh clients can access the network through mesh routers as well as directly meshing with other mesh clients. n While the infrastructure provides connectivity to other networks such as the Internet, Wi-Fi, Wi. MAX, cellular, and sensor networks; the routing capabilities of clients provide improved connectivity and coverage inside the WMN. n The hybrid architecture will be the most applicable case!!! IFA’ 05 ECE 6610 19

Hybrid WMNs IFA’ 05 ECE 6610 20 Hybrid WMNs IFA’ 05 ECE 6610 20

CHARACTERISTICS n Multi-hop Wireless Network n Support for Ad Hoc Networking, and Capability of CHARACTERISTICS n Multi-hop Wireless Network n Support for Ad Hoc Networking, and Capability of Self-Forming, Self-Healing, and Self-Organization n Mobility Dependence on the Type of Mesh Nodes n Multiple Types of Network Access n Dependence of Power-Consumption Constraints on the Type of Mesh Nodes n Compatibility and Interoperability with Existing Wireless Networks IFA’ 05 ECE 6610 21

WMNs vs AD HOC Networks Dedicated Routing and Configuration: n In ad-hoc networks, end-user WMNs vs AD HOC Networks Dedicated Routing and Configuration: n In ad-hoc networks, end-user devices also perform routing and configuration functionalities for all other nodes. n However, WMNs contain mesh routers for these functionalities. n Hence, the load on end-user devices is significantly decreased, which provides lower energy consumption and high-end application capabilities to possibly mobile and energy constrained end-users. n Moreover, the end-user requirements are limited which decreases the cost of devices that can be used in WMNs. IFA’ 05 ECE 6610 22

WMNs vs AD HOC Networks Multiple Radios: * Mesh routers can be equipped with WMNs vs AD HOC Networks Multiple Radios: * Mesh routers can be equipped with multiple radios to perform routing and access functionalities. * This enables separation of two main types of traffic in the wireless domain. * While routing and configuration traffic is performed between mesh routers, access to the network from end-users can be carried in a different radio. * This significantly improves the capacity of the network. * On the other hand, these functionalities are performed in the same channel in ad-hoc networks constraining the performance. IFA’ 05 ECE 6610 23

WMNs vs AD HOC Networks Mobility: n Since ad-hoc networks provide routing using the WMNs vs AD HOC Networks Mobility: n Since ad-hoc networks provide routing using the end-user devices, the network topology and connectivity depends on the movement of users. n This imposes additional challenges to routing protocols as well as network configuration and deployment. n Since mesh routers provide the infrastructure in WMNs, the coverage of the WMN can be engineered easily. n While providing continuous connectivity throughout the network, the mobility of end-users is still supported, without compromising the performance of the network. IFA’ 05 ECE 6610 24

WMNs vs AD HOC Networks Compatibility: n WMNs contain many differences when compared to WMNs vs AD HOC Networks Compatibility: n WMNs contain many differences when compared to ad hoc networks. n Ad hoc networks can be considered as a subset of WMNs. n More specifically, the existing techniques developed for ad-hoc networks are already applicable to WMNs. n As an example, through the use of mesh routers and routingcapable end-users, multiple ad hoc networks can be supported in WMNs, but with further integration of these networks. IFA’ 05 ECE 6610 25

Application Scenarios 1. Broadband Home Networking: n Realized through IEEE 802. 11 WLANs n Application Scenarios 1. Broadband Home Networking: n Realized through IEEE 802. 11 WLANs n Problem location of the access points. n Homes have many dead zones without service coverage. n Solutions based on site survey are expensive and not practical for home networking, while installation of multiple access points is also expensive and not convenient because of Ethernet wiring from access points to backhaul network access modem or hub. n Moreover, communications between end nodes under two different access points have to go all the way back to the access hub. Not an efficient solution, especially for broadband networking. n Mesh networking can resolve all these issues in home networking. IFA’ 05 ECE 6610 26

Broadband Home Networking IFA’ 05 ECE 6610 27 Broadband Home Networking IFA’ 05 ECE 6610 27

Application Scenarios 2. Community and Neighborhood Networking: n In a community, the common architecture Application Scenarios 2. Community and Neighborhood Networking: n In a community, the common architecture for network access is based on cable or DSL connected to the Internet, and the last-hop is wireless by connecting a wireless router to a cable or DSL modem. n This type of network access has several drawbacks: * Even if the information must be shared within a community or neighborhood, all traffic must flow through Internet. This significantly reduces network resource utilization. * Large percentage of areas in between houses is not covered by wireless services. * An expensive but high bandwidth gateway between multiple homes or neighborhoods may not be shared and wireless services must be set up individually. As a result, network service costs may increase. * Only a single path may be available for one home to access the Internet or communicate with neighbors. IFA’ 05 ECE 6610 28

Community Networking IFA’ 05 ECE 6610 29 Community Networking IFA’ 05 ECE 6610 29

Application Scenarios 3. Enterprise Networking: n Within an office or all offices in an Application Scenarios 3. Enterprise Networking: n Within an office or all offices in an entire building, or among offices in multiple buildings. n IEEE 802. 11 WLANs are widely used in various offices currently. However, they are still isolated islands. n Connections among them are achieved through wired Ethernet (still costly) n In addition, adding more backhaul access modems only increases capacity locally, but does not improve robustness to link failures, network congestion and other problems of the entire enterprise network. n Multiple backhaul access modems can be shared by all nodes in the entire network, and thus improve the robustness and resource utilization of enterprise networks. n WMNs can grow easily as the size of enterprise expands. IFA’ 05 ECE 6610 30

Enterprise Networking IFA’ 05 ECE 6610 31 Enterprise Networking IFA’ 05 ECE 6610 31

Application Scenarios Metropolitan Area Networks: n The physical-layer transmission rate of a node in Application Scenarios Metropolitan Area Networks: n The physical-layer transmission rate of a node in WMNs is much higher than that in any cellular networks, e. g. , an IEEE 802. 11 g node can transmit at a rate of 54 Mbps. n Moreover, the communication between nodes in WMNs does not rely on a wired backbone. n Compared to wired networks, e. g. , cable or optical networks, wireless mesh MAN is an economic alternative to broadband networking, especially in underdeveloped regions. n Wireless mesh MAN covers a potentially much larger area than home, enterprise, building, or community networks. n Thus, the requirement on the network scalability by wireless mesh MAN is much higher than that by other applications. IFA’ 05 ECE 6610 32

Metropolitan Area Networks IFA’ 05 ECE 6610 33 Metropolitan Area Networks IFA’ 05 ECE 6610 33

METROPOLITAN AREA NETWORKS IFA’ 05 ECE 6610 34 METROPOLITAN AREA NETWORKS IFA’ 05 ECE 6610 34

Application Scenarios Transportation Systems: n Instead of limiting IEEE 802. 11 or 802. 16 Application Scenarios Transportation Systems: n Instead of limiting IEEE 802. 11 or 802. 16 access to stations and stops, mesh networking technology can extend access into buses, ferries, and trains. n Thus, convenient passenger information services, remote monitoring of in -vehicle security video, and driver communications can be supported. n To enable such mesh networking for a transportation system, two key techniques are needed: the high-speed mobile backhaul from a vehicle (car, bus, or train) to the Internet and mobile mesh networks within the vehicle. IFA’ 05 ECE 6610 35

Transportation Systems IFA’ 05 ECE 6610 36 Transportation Systems IFA’ 05 ECE 6610 36

Application Scenarios Building Automation: n In a building, various electrical devices including power, light, Application Scenarios Building Automation: n In a building, various electrical devices including power, light, elevator, air conditioner, etc. , need to be controlled and monitored. n Currently this task is accomplished through standard wired networks, which is very expensive due to the complexity in deployment and maintenance of a wired network. n Recently Wi-Fi based networks have been adopted to reduce the cost of such networks. n However, this effort has not achieved satisfactory performance yet, because deployment of Wi-Fis for this application is still rather expensive due to wiring of Ethernet. n If BACnet (Building Automation and Control Networks) access points are replaced by mesh routers, the deployment cost will be significantly reduced. n The deployment process is also much simpler due to the mesh connectivity among wireless routers. IFA’ 05 ECE 6610 37

Building Automation IFA’ 05 ECE 6610 38 Building Automation IFA’ 05 ECE 6610 38

Application Scenarios Health and Medical Systems: n In a hospital or medical center, monitoring Application Scenarios Health and Medical Systems: n In a hospital or medical center, monitoring and diagnosis data need to be processed and transmitted from one room to another for various purposes. n Data transmission is usually broadband, since high resolution medical images and various periodical monitoring information can easily produce a constant and large volume of data. n Traditional wired networks can only provide limited network access to certain fixed medical devices. n Wi-Fi based networks must rely on the existence of Ethernet connections, which may cause high system cost and complexity but without the abilities to eliminate dead spots. n However, these issues do not exist in WMNs. IFA’ 05 ECE 6610 39

Application Scenarios Security Surveillance Systems: n As security is turning out to be a Application Scenarios Security Surveillance Systems: n As security is turning out to be a very high concern, security surveillance systems become a necessity for enterprise buildings, shopping malls, grocery stores, etc. n In order to deploy such systems at locations as needed, WMNs are a much more viable solution than wired networks to connect all devices. n Since still images and videos are the major traffic flowing in the network, this application demands much higher network capacity than other applications. IFA’ 05 ECE 6610 40

Critical Factors Influencing Network Performance 1. Radio Techniques: Typical examples: * Directional and smart Critical Factors Influencing Network Performance 1. Radio Techniques: Typical examples: * Directional and smart antennas * MIMO systems, (Key Technology for IEEE 802. 11 n) * Multi-radio/multi-channel systems * Reconfigurable radios * Frequency agile/cognitive radios and * Even software radios IFA’ 05 ECE 6610 41

Critical Factors Influencing Network Performance 2. Scalability 3. Mesh Connectivity 4. Broadband Qo. S Critical Factors Influencing Network Performance 2. Scalability 3. Mesh Connectivity 4. Broadband Qo. S 5. Compatibility and Inter-Operability 6. Security 7. Ease of Use IFA’ 05 ECE 6610 42

MAC LAYER Differences between WMNs MACs and the Wireless Networks MACs * MACs for MAC LAYER Differences between WMNs MACs and the Wireless Networks MACs * MACs for WMNs are concerned with more than one hop communication * MAC must be distributed, needs to be collaborative, and must work for multipoint-to-multipoint communication. * Network self-organization is needed for better collaboration between neighboring nodes and nodes in multi-hop distances. * Mobility affects the performance of MAC. IFA’ 05 ECE 6610 43

SINGLE CHANNEL MACs Improving Existing MAC Protocols MAC protocols are proposed for multi-hop WMNs SINGLE CHANNEL MACs Improving Existing MAC Protocols MAC protocols are proposed for multi-hop WMNs by enhancing existing MAC protocols. For example, in an IEEE 802. 11 mesh networks, these schemes usually adjust parameters of CSMA/CA, e. g. , contention window size, and modify backoff procedures. However, these solutions only achieve a low end-to-end throughput, because they cannot significantly reduce the probability of contentions among neighboring nodes. As long as contention occurs frequently, whichever method is taken to modify backoff or contention resolution procedures, the end-to-end throughput will still be significantly reduced due to the accumulating effect on the multi-hop path. IFA’ 05 ECE 6610 44

SINGLE CHANNEL MACs Cross-layer design with advanced physical layer techniques 1. MACs based on SINGLE CHANNEL MACs Cross-layer design with advanced physical layer techniques 1. MACs based on Directional Antennas Eliminate exposed nodes if antenna beam is assumed to be perfect. Due to the directional transmission, more hidden nodes are produced. Also face other difficulties such as cost, system complexity, and practicality of fast steerable directional antennas. IFA’ 05 ECE 6610 45

SINGLE CHANNEL MACs Proposing Innovative MAC Protocols: Determined by their poor scalability in an SINGLE CHANNEL MACs Proposing Innovative MAC Protocols: Determined by their poor scalability in an ad hoc multi-hop network, random access protocols such as CSMA/CA are not an efficient solution. Thus, revisiting the design of MAC protocols based on TDMA or CDMA is indispensable. To date, few TDMA or CDMA MAC protocols are available for WMNs, probably because of two factors: * The complexity and cost of developing a distributed and cooperative MAC with TDMA or CDMA. * The compatibility of TDMA (or CDMA) MAC with existing MAC protocols. IFA’ 05 ECE 6610 46

SINGLE CHANNEL MACs 2. MACs with Power Control They reduce exposed nodes, especially in SINGLE CHANNEL MACs 2. MACs with Power Control They reduce exposed nodes, especially in a dense network, using low transmission power, and thus, improve the spectrum spatial reuse factor in WMNs. However, hidden nodes may become worse because lower transmission power level reduces the possibility of detecting a potential interfering node. IFA’ 05 ECE 6610 47

SINGLE CHANNEL MACs For example, in IEEE 802. 16, the original MAC protocol is SINGLE CHANNEL MACs For example, in IEEE 802. 16, the original MAC protocol is a centralized TDMA scheme, but a distributed TDMA MAC for IEEE 802. 16 mesh is still missing. In IEEE 802. 11 WMNs, how to design a distributed TDMA MAC protocol overlaying CSMA/CA is an interesting but a challenging problem!!! IFA’ 05 ECE 6610 48

Multi-Channel MACs Multi-Channel Single-Transceiver MAC: If cost and compatibility are the concern, one transceiver Multi-Channel MACs Multi-Channel Single-Transceiver MAC: If cost and compatibility are the concern, one transceiver on a radio is a preferred hardware platform. Since only one transceiver is available, only one channel is active at a time in each network node. However, different nodes may operate on different channels simultaneously. To coordinate transmissions between network nodes under this situation, protocols such as the multi-channel MAC and the seed-slotted channel hopping (SSCH) scheme are needed. SSCH is actually a virtual MAC protocol, since it works on top of IEEE 802. 11 MAC and does not need changes in the IEEE 802. 11 MAC. IFA’ 05 ECE 6610 49

Multi-Channel MACs Multi-Channel Multi-Transceiver MACs A radio includes multiple parallel RF front-end chips and Multi-Channel MACs Multi-Channel Multi-Transceiver MACs A radio includes multiple parallel RF front-end chips and baseband processing modules to support several simultaneous channels. On top of the physical layer, only one MAC layer module is needed to coordinate the functions of multiple channels. To date, no multi-channel multi-transceiver MAC protocol has been proposed for WMNs. IFA’ 05 ECE 6610 50

Multi-Channel MACs Multi-Radio MACs n The network node has multiple radios each with its Multi-Channel MACs Multi-Radio MACs n The network node has multiple radios each with its own MAC and physical layers. n Communications in these radios are totally independent. n Thus, a virtual MAC protocol such as the multi-radio unification protocol (MUP) is required on top of MAC to coordinate communications in all channels. n In fact, one radio can have multiple channels in this case. n However, for simplicity of design and application, a single fixed channel is usually applied in each radio. IFA’ 05 ECE 6610 51

MAC LAYER-Open Research Issues Scalable Single-Channel MACs: The scalability issue in multi-hop ad hoc MAC LAYER-Open Research Issues Scalable Single-Channel MACs: The scalability issue in multi-hop ad hoc networks has not been fully solved yet. Most of existing MAC protocols only solve partial problems of the overall issue, but raise other problems. To make the MAC protocol really scalable, new distributed and collaborative schemes must be proposed to ensure that the network performance (e. g. , throughput and even Qo. S parameters such as delay and delay jitter) will not degrade as the network size increases. IFA’ 05 ECE 6610 52

MAC LAYER-Open Research Issues Scalable Multi-Channel MACs Multi-channel MAC protocols for radios with multiple MAC LAYER-Open Research Issues Scalable Multi-Channel MACs Multi-channel MAC protocols for radios with multiple transceivers have not been thoroughly explored, possibly due to the relatively high cost of such radios. However, as the cost goes down, a multi-channel multi-transceiver MAC will be a rather promising solution for WMNs. It is obvious that a multi-channel MAC protocol can achieve higher throughput than a single-channel MAC. However, to really achieve spectrum efficiency and improve the per-channel throughput, the scalable MAC protocol needs to consider the overall performance improvement in multiple channels. Thus, developing a scalable multi-channel MAC is a more challenging task than a single-channel MAC. IFA’ 05 ECE 6610 53

MAC LAYER-Open Research Issues MAC/Physical Cross-Layer Design When advanced physical layer techniques, such as MAC LAYER-Open Research Issues MAC/Physical Cross-Layer Design When advanced physical layer techniques, such as MIMO and cognitive radios, are used, novel MAC protocols, especially multi-channel MAC, need to be proposed to utilize the agility provided by the physical layer. Network Integration in the MAC Layer Mesh routers in WMNs are responsible for integration of various wireless technologies. Thus, advanced bridging functions must be developed in the MAC layer so that different wireless radios, such as IEEE 802. 11, 802. 16, 802. 15, etc. , can seamlessly work together. Reconfigurable/software radios and the related radio resource management schemes may be the ultimate solution to these bridging functions. IFA’ 05 ECE 6610 54

MAC LAYER-Open Research Issues MAC Protocol Implementation. The functions of a MAC protocol are MAC LAYER-Open Research Issues MAC Protocol Implementation. The functions of a MAC protocol are distributed in software, firmware, and hardware. Modifying functions in the firmware or hardware is much more complicated and costly than doing that in software. A solution to this problem is to develop a new MAC protocol architecture in which the proposed new MAC functions can be completely implemented in the software. Currently, several IEEE 802. 11 chipset manufacturers have eliminated firmware in their MAC implementation architecture, and the hardware of some MAC chipsets is software programmable like a software defined radio (SDR). With such an architecture, a true software MAC. can be implemented. IFA’ 05 ECE 6610 55

Routing Layer Optimal routing protocol for WMNs must capture the following features: Multiple Performance Routing Layer Optimal routing protocol for WMNs must capture the following features: Multiple Performance Metrics. * Many existing routing protocols use minimum hop-count as a performance metric to select the routing path. * This has been demonstrated to be ineffective in many situations. * For example, when a link on the minimum hop-count path has bad quality or experiences congestion, it becomes a bottleneck to the end-to-end throughput. * To solve this problem, other performance metrics, e. g. , link quality and round trip time (RTT), must be considered in the routing protocol. IFA’ 05 ECE 6610 56

Routing Layer Scalability. Setting up a routing path in a very large wireless network Routing Layer Scalability. Setting up a routing path in a very large wireless network may take a long time. Furthermore, even when the path is established, the node states on the path may change. Thus, it is critical to have a scalable routing protocol in WMNs. IFA’ 05 ECE 6610 57

Routing Layer Robustness. * To avoid service disruption, WMNs must be robust to link Routing Layer Robustness. * To avoid service disruption, WMNs must be robust to link failures or congestion. * Thus, routing protocols need to be fault tolerant with link failures and can achieve load balancing. IFA’ 05 ECE 6610 58

Routing Layer Adaptive Support of Both Mesh Routers and Mesh Clients. Considering the minimal Routing Layer Adaptive Support of Both Mesh Routers and Mesh Clients. Considering the minimal mobility and no constraint of power consumption in mesh routers, a routing protocol much simpler than ad hoc network routing protocols can be developed for mesh routers. However, the routing protocol for mesh clients is usually complicated due to the support of mobility and power efficiency. Consequently, it is necessary to design a routing protocol that can adaptively support both mesh routers and mesh clients. IFA’ 05 ECE 6610 59

Routing Layer Routing Protocols with Various Performance Metrics: LQSR aims to select a routing Routing Layer Routing Protocols with Various Performance Metrics: LQSR aims to select a routing path according to link quality metrics. Three performance metrics, i. e. , expected transmission count (ETX), perhop RTT, and per-hop packet pair are implemented separately in LQSR. The performance of the routing protocol with these three performance metrics is compared with the method using the minimum hop-count. For stationary nodes in WMNs, ETX achieves the best performance, while the minimum hop-count method outperforms the three link quality metrics when nodes are mobile. This result illustrates that the used link quality metrics are still not enough for WMNs when mobility is concerned. IFA’ 05 ECE 6610 60

Routing Layer Multi-Radio Routing: Multi-radio per node is a preferred architecture in the network Routing Layer Multi-Radio Routing: Multi-radio per node is a preferred architecture in the network layer, because the capacity can be increased without modifying The MAC protocol. A multi-radio LQSR (MR-LQSR) is proposed where a new performance metric, called weighted cumulative Expected transmission time (WCETT), is incorporated. WCETT takes into account both link quality metric and the minimum hop-count and achieves good tradeoff between delay and throughput. MR-LQSR assumes that all radios on each node are tuned to noninterfering channels with the assignment changing infrequently. In other words, MR-LQSR relies on the MAC layer to perform channel selection. IFA’ 05 ECE 6610 61

Routing Layer Multi-Path Routing * The main objectives of using multi-path routing are to Routing Layer Multi-Path Routing * The main objectives of using multi-path routing are to perform better load balancing and to provide high fault tolerance. * Multiple paths are selected between source and destination. * When link is broken on a path due to a bad channel quality or mobility another path in the set of existing paths can be chosen. * Thus, without waiting for setting up a new routing path, the end-to-end delay, throughput, and fault tolerance can be improved. * However, given a performance metric, the improvement depends on the availability of node-disjoint routes between source and destination * Another drawback of multi-path routing is its complexity * As a result, how to design a cost-effective multi-path routing protocol with appropriate performance metrics needs further study. IFA’ 05 ECE 6610 62

Routing Layer Hierarchical Routing: In hierarchical routing, a certain self-organization scheme is employed to Routing Layer Hierarchical Routing: In hierarchical routing, a certain self-organization scheme is employed to group network nodes into clusters. Each cluster has one or more cluster heads. Nodes in a cluster can be one or more hops away from the cluster head. Since connectivity between clusters are needed, some nodes can communicate with more than one cluster and work as a gateway. Routing within a cluster and routing between clusters may use different mechanisms. IFA’ 05 ECE 6610 63

Routing Layer Hierarchical Routing: For example, inter-cluster routing can be a proactive protocol, while Routing Layer Hierarchical Routing: For example, inter-cluster routing can be a proactive protocol, while intra-cluster routing can be on demand. When the node density is high, hierarchical routing protocols tend to achieve much better performance because of less overhead, shorter average routing path, and quicker set-up procedure of routing path. However, the complexity of maintaining the hierarchy may compromise the performance of the routing protocol. Implementation difficulty, because a node selected as a cluster head may not necessarily have higher processing capability and channel capacity than the other nodes. Unless being intentionally designed so, the cluster head may become a bottleneck. IFA’ 05 ECE 6610 64

Routing Layer Geographic Routing: Compared to topology-based routing schemes, geographic routing schemes forward packets Routing Layer Geographic Routing: Compared to topology-based routing schemes, geographic routing schemes forward packets by only using the position information of nodes in the vicinity and the destination node. Thus, topology change has less impact on the geographic routing than other routing protocols. Early geographic routing algorithms are a type of single-path greedy routing schemes in which packet forwarding decision is made based on the location information of current forwarding node, its neighbors, and the destination node. However, all greedy routing algorithms have a common problem, i. e. , delivery is not guaranteed even if a path exists between source and destination. IFA’ 05 ECE 6610 65

Routing Layer Geographic Routing: Partial flooding and keeping the past routing information can help Routing Layer Geographic Routing: Partial flooding and keeping the past routing information can help to guarantee delivery. However, these approaches increase communication overhead and lose the stateless property of single-path greedy routing. In order to keep the stateless property and guarantee delivery, planar-graph based geographic routing algorithms are proposed recently. However, these algorithms usually have much higher communication overhead than single-path greedy routing algorithms. IFA’ 05 ECE 6610 66

EXISTING ROUTING SOFTWARE IMPLEMENTATIONS The Mobile Mesh software is covered by the GNU General EXISTING ROUTING SOFTWARE IMPLEMENTATIONS The Mobile Mesh software is covered by the GNU General Public License (Version 2). n TBRPF, or Topology Broadcast based on Reverse-Path Forwarding, is a proactive, link-state routing protocol designed for mobile ad-hoc networks, which provides hop-by-hop routing along minimum hop paths to each destination. It seems it is patent-protected unless it becomes a IETF standard. n OSPF is a link-state routing protocol. It is designed to be run internal to a single Autonomous System. Each OSPF router maintains an identical database describing the Autonomous System's topology. From this database, a routing table is calculated by constructing a shortest-path tree. n GNU Zebra is free software that manages TCP/IP-based routing protocols. It is released as part of the GNU Project, and is distributed under the GNU General Public License. It supports BGP-4 protocol as described in RFC 1771 (A Border Gateway Protocol 4) as well as RIPv 1, RIPv 2, and OSPFv 2. n Locust. World develops a free bootable CD solution based on the AODV protocol, and also develops and sells a complete ready-to-deploy Mesh. Box running its software, most (but not all) of which is available under the GPL. The Mesh. Box and mesh software have been used in a number of community networks in the UK. n 4 g Mesh. Cube. The German company 4 G Mobile Systems has developed a tiny Mesh. Cube running Debian Linux on a MIPS processor, using MITRE Mobile Mesh routing software. This is a ready-to-deploy gateway with both a wireless and a wired interface. With a power consumption of 4 W (and potentially lower), it is ideal for deployment with an autonomous sustainable power source. IFA’ 05 ECE 6610 67

Routing Layer- Open Research Issues Scalability. Hierarchical routing protocols can only partially solve this Routing Layer- Open Research Issues Scalability. Hierarchical routing protocols can only partially solve this problem due to their complexity and difficulty of management. Geographic routing relies on the existence of GPS or similar positioning technologies, which increases cost and complexity of WMNs. Thus, new scalable routing protocols need to be developed. Better Performance Metrics. New performance metrics need to be developed. Also, it is necessary to integrate multiple performance metrics into a routing protocol so that the optimal overall performance is achieved. IFA’ 05 ECE 6610 68

Routing Layer - Open Research Issues Routing/MAC Cross-Layer Design. A routing protocol needs to Routing Layer - Open Research Issues Routing/MAC Cross-Layer Design. A routing protocol needs to interact with the MAC layer in order to improve its performance. Adopting multiple performance metrics from layer-2 into routing protocols is an example. However, interaction between MAC and routing layers is so close that merely exchanging parameters between them is not adequate. Merging certain functions of MAC and routing protocols is a promising approach. It is particularly meaningful for multi-radio or multi-channel routing, because the channel/radio selection in the MAC layer can help the path selection in the routing layer. IFA’ 05 ECE 6610 69

Routing Layer- Open Research Issues Hybrid Routing. In WMNs, mesh routers and mesh clients Routing Layer- Open Research Issues Hybrid Routing. In WMNs, mesh routers and mesh clients have different constraints in power efficiency and mobility. Thus, a new routing protocol is needed to adaptively support hybrid nodes: mesh routers and mesh clients. IFA’ 05 ECE 6610 70

Transport Layer Reliable Data Transport * * IFA’ 05 TCP variants New transport protocols. Transport Layer Reliable Data Transport * * IFA’ 05 TCP variants New transport protocols. ECE 6610 71

TRANSPORT PROTOCOLS TCP Variants: Non-Congestion Packet Losses. The classical TCPs do not differentiate congestion TRANSPORT PROTOCOLS TCP Variants: Non-Congestion Packet Losses. The classical TCPs do not differentiate congestion and noncongestion losses. As a result, when non-congestion losses occur, the network throughput quickly drops due to unnecessary congestion avoidance. In addition, once wireless channels are back to the normal operation, the classical TCP cannot be recovered quickly. Feedback mechanism can be used to differentiate different packet losses. IFA’ 05 ECE 6610 72

TRANSPORT PROTOCOLS Unknown Link Failure Link failure occurs frequently in mobile ad hoc networks, TRANSPORT PROTOCOLS Unknown Link Failure Link failure occurs frequently in mobile ad hoc networks, since all nodes are mobile. As far as WMNs are concerned, link failure is not as critical as in mobile ad hoc networks, because the WMN infrastructure avoid the issue of single-point-of-failure. However, due to wireless channels and mobility in mesh clients, link failure may still happen. To enhance TCP performance, link failure needs to be detected. One possible approach is to include a link failure notification scheme in the transport protocol. IFA’ 05 ECE 6610 73

TRANSPORT PROTOCOLS Network Asymmetry. Network asymmetry is defined as the situation where the forward TRANSPORT PROTOCOLS Network Asymmetry. Network asymmetry is defined as the situation where the forward direction of a network is significantly different from the reverse direction in terms of bandwidth, loss rate, and latency Since TCP is critically dependent on ACK, so its performance can be severely impacted by network asymmetry. Schemes such as ACK filtering, ACK congestion control, etc. , are proposed to solve the network asymmetry problem However, whether they are applicable to WMNs needs investigation. IFA’ 05 ECE 6610 74

TRANSPORT PROTOCOLS Large RTT Variations. In WMNs, mesh routers and mesh clients are connected TRANSPORT PROTOCOLS Large RTT Variations. In WMNs, mesh routers and mesh clients are connected as an ad hoc network, so dynamic change of routing path is common. Considering mobility, variable link quality, traffic load, and other factors, the change may be frequent and may cause large variations of RTT. This will degrade the TCP performance, because the normal operation of TCP relies on a smooth measurement of RTT. IFA’ 05 ECE 6610 75

TRANSPORT PROTOCOLS New Transport Protocols: To further improve performance of transport protocols, researchers have TRANSPORT PROTOCOLS New Transport Protocols: To further improve performance of transport protocols, researchers have started to develop entirely new transport protocols. The ad hoc transport protocol (ATP) is proposed for ad hoc networks. Transmissions in ATP are rate-based, and quick start is used for initial rate estimation. The congestion detection is a delay-based approach, and thus ambiguity between congestion losses and non-congestion losses is avoided. IFA’ 05 ECE 6610 76

TRANSPORT PROTOCOLS New Transport Protocols: Moreover, in ATP, there is no retransmission timeout, and TRANSPORT PROTOCOLS New Transport Protocols: Moreover, in ATP, there is no retransmission timeout, and congestion control and reliability are decoupled. By using an entirely new set of mechanisms for reliable data transport, new transport protocol like ATP achieves much better performance (e. g. , delay, throughput, and fairness) than the TCP variants. However, for WMNs, an entirely new transport protocol is not Favorable solution. WMNs will be integrated with the Internet and many other wireless networks, and thus, transport protocols for WMNs needs to be compatible with TCPs in such networks. IFA’ 05 ECE 6610 77

TRANSPORT PROTOCOLS Real-Time Delivery RCP protocols can be classified into two types: additive-increase multiplicative-decrease TRANSPORT PROTOCOLS Real-Time Delivery RCP protocols can be classified into two types: additive-increase multiplicative-decrease (AIMD)-based or equation-based. An adaptive detection rate control (ADTFRC) scheme for mobile ad hoc networks an end-to-end multi-metric joint detection approach is developed for TCP-friendly rate control schemes. To really support real-time delivery for multimedia traffic, the accuracy of the detection approach is still insufficient. Also all non-congestion packet losses due to different problems are processed in the same way, which may degrade the performance of the rate control scheme. IFA’ 05 ECE 6610 78

TRANSPORT PROTOCOLSOPEN RESEARCH ISSUES Cross-layer Solution to Network Asymmetry. All problems of TCP performance TRANSPORT PROTOCOLSOPEN RESEARCH ISSUES Cross-layer Solution to Network Asymmetry. All problems of TCP performance degradation are actually related to protocols in the lower layers. For example, it is the routing protocol that determines the path for both TCP data and ACK packets. To avoid asymmetry between data and ACK packets, it is desired for a routing protocol to select an optimal path for both data and ACK packets. Moreover, the link layer performance directly impacts packet loss ratio and network asymmetry. IFA’ 05 In order to reduce the possibility of network asymmetry, the MAC layer and error control may need to treat TCP data and ACK packets differently. ECE 6610 79

TRANSPORT PROTOCOLSOPEN RESEARCH ISSUES Adaptive TCP. WMNs will also be integrated with the Internet TRANSPORT PROTOCOLSOPEN RESEARCH ISSUES Adaptive TCP. WMNs will also be integrated with the Internet and various wireless networks such as IEEE 802. 11, 802. 16, 802. 15, etc. The characteristics of these networks may be significantly heterogeneous due to different network capacity and behaviors of error control, MAC, and routing protocols. Such heterogeneity renders the same TCP ineffective for all networks. Applying different TCPs in different networks is a complicated and costly approach, and cannot achieve satisfactory performance IFA’ 05 ECE 6610 80

Application Layer Internet Access. Various Internet applications provide important timely information to people, make Application Layer Internet Access. Various Internet applications provide important timely information to people, make life more convenient, and increase work efficiency and productivity. In a home or small/medium business environment, the most popular network access solution is still DSL or cable modem along with IEEE 802. 11 access points. However, comparing with this approach, WMNs have many potential advantages: low cost, higher speed, and easy installation. IFA’ 05 ECE 6610 81

Application Layer Distributed Information Storage and Sharing. Backhaul access to the Internet is not Application Layer Distributed Information Storage and Sharing. Backhaul access to the Internet is not necessary in this type of applications, and users only communicate within WMNs. A user may want to store high-volume data in disks owned by other users, download files from other users' disks based on peer-to. Peer networking mechanism, and query/retrieve information located in distributed database servers. Users within WMNs may also want to chat, talk on the video phones, and play games with each other. IFA’ 05 ECE 6610 82

Application Layer Information Exchange across Multiple Wireless Networks. For example, a cellular phone may Application Layer Information Exchange across Multiple Wireless Networks. For example, a cellular phone may want to talk to a Wi-Fi phone through WMNs, or a user on a Wi-Fi network may expect to monitor the status in various sensors in a wireless sensor networks. IFA’ 05 ECE 6610 83

Application Layer Three research directions: 1. Improve Existing Application Layer Protocols. Due to ad Application Layer Three research directions: 1. Improve Existing Application Layer Protocols. Due to ad hoc and multi-hop wireless network architecture of WMNs, protocols in the lower layers cannot provide perfect support for the application layer. For example, as perceived by the application layer, packet loss may not always be zero, packet delay may be variable with a large jitter, etc. Such problems may fail many Internet applications that work smoothly in a wired network. Therefore, existing application layer protocols need to be improved. IFA’ 05 ECE 6610 84

Application Layer 2. Propose New Application Layer Protocols for Distributed Information Sharing. Currently, many Application Layer 2. Propose New Application Layer Protocols for Distributed Information Sharing. Currently, many peer-to-peer protocols are available for information sharing on the Internet. However, these protocols cannot achieve a satisfactory performance in WMNs, since WMNs have much different characteristics than the Internet. New application layer protocols need to be developed. IFA’ 05 ECE 6610 85

Application Layer 3. Develop Innovative Applications for WMNs. Such applications must bring tremendous benefits Application Layer 3. Develop Innovative Applications for WMNs. Such applications must bring tremendous benefits to users, and cannot achieve best performance without WMNs. Such applications will enable WMNs to be a unique networking solution instead of just another option of wireless networking. IFA’ 05 ECE 6610 86

Mobility Management Centralized mobility management schemes are not applicable in WMNs. Thus, a distributed Mobility Management Centralized mobility management schemes are not applicable in WMNs. Thus, a distributed mobility management scheme is needed for WMNs. However, because of the existence of a backbone network a distributed scheme for WMNs can be simpler than that for mobile ad hoc networks. How to take advantages of the network backbone to design a light-weight distributed mobility management scheme for WMNs needs further investigation. IFA’ 05 ECE 6610 87

Mobility Management Location service is a desired feature by WMNs. Location information can enhance Mobility Management Location service is a desired feature by WMNs. Location information can enhance the performance of MAC and routing protocols. It can help to develop promising location-related applications. Proposing accurate or efficient algorithms for location service is still an open research topic Mobility management is closely related to multiple layers of network protocols, the development of multi-layer mobility management schemes is another interesting research topic. IFA’ 05 ECE 6610 88

Power Management The goal of power management in WMNs varies with network nodes. Usually, Power Management The goal of power management in WMNs varies with network nodes. Usually, mesh routers do not have a constraint on power consumption; power management aims to control connectivity, interference, spectrum spatial-reuse, and topology. In contrast to mesh routers, mesh clients may expect protocols to be power efficient. For example, some mesh clients are IP phones or even sensors; power efficiency is the major concern for them. Thus, it is quite possible that some applications of WMNs require power management to optimize both power efficiency and connectivity, which results in a complicated problem. IFA’ 05 ECE 6610 89

Network Monitoring The statistics in the MIB (management information base) of mesh nodes, especially Network Monitoring The statistics in the MIB (management information base) of mesh nodes, especially mesh routers, need to be reported to one or several servers in order to continuously monitor the network performance. In addition, data processing algorithms in the performance monitoring software on the server analyze these statistical data and determine potential abnormality. Based on the statistical information collected from MIB, data processing algorithms can also accomplish many other functions such as network topology monitoring. To reduce overhead, schemes for efficient transmission of network monitoring information are expected. In addition, in order to accurately detect abnormal operation and quickly derive network topology of WMNs, effective data processing algorithms need to be developed. IFA’ 05 ECE 6610 90

SECURITY WMNs lack efficient and scalable security solutions, because their security is easier to SECURITY WMNs lack efficient and scalable security solutions, because their security is easier to be compromised due to: distributed network architecture, vulnerability of channels and nodes in the shared wireless medium, and dynamic change of network topology. Different attacks in several protocol layers can easily fail the network. Attacks may occur in the routing protocol such as advertising wrong routing updates. IFA’ 05 ECE 6610 91

SECURITY The attacker may sneak into the network, impersonate a legitimate node, and does SECURITY The attacker may sneak into the network, impersonate a legitimate node, and does not follow the required specifications of a routing protocol. Same types of attacks as in routing protocols may also occur in MAC protocols. For example, the backoff procedures and NAV for virtual carrier sense of IEEE 802. 11 MAC may be misused by some attacking nodes, which cause the network to be always congested by these malicious nodes. Attackers may also sneak into the network by misusing the cryptographic primitives. IFA’ 05 ECE 6610 92

SECURITY In a cryptographic protocol, the exchange of information among users occurs frequently. The SECURITY In a cryptographic protocol, the exchange of information among users occurs frequently. The users employ a fair exchange protocol which depends on a trusted third party. However, this trusted party is not available in WMNs due to lack of infrastructure. A widely accepted counter-attack measure is authentication and authorization. For wireless LANs, this is taken care of by authentication, authorization, and accounting (AAA) services directly over the access point or via gateways. IFA’ 05 ECE 6610 93

SECURITY However, AAA is performed through a centralized server such as RADIUS (remote authentication SECURITY However, AAA is performed through a centralized server such as RADIUS (remote authentication dial-in user service). Such a centralized scheme is not applicable in WMNs. Moreover, security key management in WMNs is much more difficult thanin wireless LANs, because there is no central authority, trusted third party or server to manage security keys. Key management in WMNs need to be performed in a distributed but secure way. Therefore, a distributed authentication and authorization scheme with secure key management needs to be proposed for WMNs. IFA’ 05 ECE 6610 94

SECURITY To further ensure security of WMNs, two more strategies need to be considered: SECURITY To further ensure security of WMNs, two more strategies need to be considered: embedding security mechanism into network protocols such as secure routing and MAC protocols or developing security monitoring and response systems to detect attacks monitor service disruption, and respond quickly to attacks. For a secure networking protocol, a multi-protocol layer security scheme is desired, because security attacks occur simultaneously in different protocol layers. For a security monitoring system, a cross-layer framework also needs to be developed. How to design and implement a practical security system, including cross-layer secure network protocols and various intrusion detection algorithms, is a challenging research topic. IFA’ 05 ECE 6610 95

Cross-Layer Design The methodology of layered protocol design does not necessarily lead to an Cross-Layer Design The methodology of layered protocol design does not necessarily lead to an optimum solution. This is particularly the case in WMNs due to unreliable physical links, dynamic network topology, distributed network architecture, etc. The physical channel in WMNs is variable in terms of capacity, bit error rate, etc. Although different coding, modulation, and error control schemes can be used to improve the performance of the physical channel, there is no way to guarantee fixed capacity, zero packet loss rate, or reliable connectivity. IFA’ 05 ECE 6610 96

Cross-Layer Design In order to provide satisfactory network performance, MAC, routing, and transport layer Cross-Layer Design In order to provide satisfactory network performance, MAC, routing, and transport layer protocols need to interactively work together with the physical layer. In WMNs, because of the ad hoc feature, network topology constantly changes due to mobility and link failures. Such a dynamic network topology impacts multiple protocol layers. Thus, in order to improve the protocol efficiency, cross-layer design become indispensable, as discussed before in the open research issues of different protocol layers. IFA’ 05 ECE 6610 97

Cross-Layer Design Cross-layer design can be performed in two ways. 1. Improve the performance Cross-Layer Design Cross-layer design can be performed in two ways. 1. Improve the performance of a protocol layer by considering parameters in other protocol layers. Typically, parameters in the lower protocol layers are reported to higher layers, e. g. , the packet loss rate in the MAC layer can be reported to the transport layer so that a TCP protocol is able to differentiate congestion from packet loss; e. g. , physical layer can report the link quality to a routing protocol as an additional performance metrics for the routing algorithms. IFA’ 05 ECE 6610 98

Cross-Layer Design 2. Merge several protocols into one component, e. g. , in ad Cross-Layer Design 2. Merge several protocols into one component, e. g. , in ad hoc networks, MAC and routing protocols can be combined into one protocol in order to closely consider their interactions. The advantage of the first way is that it does not totally abandon the transparency between protocol layers. However, the second way can achieve much better performance through closer interaction between protocols. Certain issues must be considered when carrying out cross-layer protocol design: Cross-layer design have risks due to loss of protocol layer abstraction, incompatibility with existing protocols, unforeseen impact on the future design of the network, and difficulty in maintenance and management. IFA’ 05 ECE 6610 99

Academic Research Testbeds Carnegie-Mellon University's mobile ad hoc network testbed. It consists of 7 Academic Research Testbeds Carnegie-Mellon University's mobile ad hoc network testbed. It consists of 7 nodes: 2 stationary nodes, 5 car mounted nodes that drive around the testbed site, and 1 car mounted roving node that enters and leaves the site. Packets are routed between the nodes using the DSR protocol which also integrates the ad hoc network into the Internet via a gateway. They experiment with the network behavior under different levels of traffic load, including audio and video streams, and designing protocol enhancements to provide these streams with Qo. S promises. IFA’ 05 ECE 6610 100

Academic Research Testbeds Interesting results were observed in the experiments at CMU: Local (i. Academic Research Testbeds Interesting results were observed in the experiments at CMU: Local (i. e. , link layer) retransmission algorithms is a critical part of any multihop ad hoc network. If the retransmission algorithms implemented above the link layer, it must be adaptive in order to accommodate network congestion and periods of high contention in the wireless channel. Delivering routing protocol control packets as rapidly as possible is important for high end-to-end performance, and this implies that packets with routing implications should be scheduled for transmission ahead of users data packets. IFA’ 05 ECE 6610 101

Academic Research Testbeds MIT's Roofnet This is an experimental multi-hop 802. 11 b mesh Academic Research Testbeds MIT's Roofnet This is an experimental multi-hop 802. 11 b mesh network. It consists of about 50 wireless nodes to interconnect the Ethernet networks (with Internet gateways) in apartments in Cambridge, MA. A primary feature of Roofnet is that it requires no configuration or planning. One consequence of an unplanned network is that each node can route packets through any of a large number of neighbors, but the radio link to each neighbor is often of marginal quality; finding the best multi-hop routes through a rich mesh of marginal links turns out to be a challenge. IFA’ 05 ECE 6610 102

Academic Research Testbeds MIT's Roofnet The average TCP throughput and latency of all Roofnet Academic Research Testbeds MIT's Roofnet The average TCP throughput and latency of all Roofnet nodes to their nearest gateway were measured in April 2004. When 1 hop is considered for 18 nodes, the average throughput and latency are 357. 2 Kbytesps and 9. 7 ms. However, when 4 hops are considered for 7 nodes, the average throughput is only 47. 3 Kbytesps and the average latency is 43. 0 ms. The low multihop throughput reflects the problem typical in all 802. 11 MAC based multihop networks. IFA’ 05 ECE 6610 103

Academic Research Testbeds SUNY Stony Brook It is 4 -node multi-channel 802. 11 b Academic Research Testbeds SUNY Stony Brook It is 4 -node multi-channel 802. 11 b testbed. Each node is equipped with 2 cards whose channels were determined based on the load-aware channel assignment algorithm. The multi-channel network achieves 2. 63 times the throughput as compared to the single channel network. The number of non-overlapping channels in 802. 11 b standard, i. e. 3, is the limiting factor for this performance. The performance, however, does not reach 3 times of the singlechannel network performance because of the inter-channel interference that cannot be completely eliminated. IFA’ 05 ECE 6610 104

Academic Research Testbeds Substantial interference was observed between two 802. 11 b cards placed Academic Research Testbeds Substantial interference was observed between two 802. 11 b cards placed on the same machine despite operating on non-overlapping channels. In addition, the degradation due to inter-channel interference was found independent of the guard band. One way to reduce the interference is to use USB cards instead of PCI/PCMCIA cards and place them side-by-side in similar configuration as in Orinoco AP-1000 access points. Another possibility is to equip cards with external antennas and place the external antennas slightly away from each other. Yet another option is to use the upcoming Engim chipsets which solve the interference problem at RF-level. IFA’ 05 ECE 6610 105

Academic Research Testbeds California Institute for Telecommunications and Information Technology (Cal-(IT)^2) A basic Wi-Fi Academic Research Testbeds California Institute for Telecommunications and Information Technology (Cal-(IT)^2) A basic Wi-Fi MAC development platform called Cal. RADIO-I This is a Wi-Fi research and development device that consists of a TI 5410 DSP, a 16 -bit stereo CODEC, external Flash and SRAM memories, and support of a RF LAN module. It provides a convenient platform for development of RF radios from the physical layer up to the application layer. The key benefit of the board is that all aspects of the MAC are coded in C language and, therefore, are altered easily for research in queueing, security, power management, MIMO, cognitive radio, and so forth. IFA’ 05 ECE 6610 106

Academic Research Testbeds It also utilizes basic Symbol Technologies' Wi-Fi test board as the Academic Research Testbeds It also utilizes basic Symbol Technologies' Wi-Fi test board as the base for modifying board and re-spinning to incorporate New features. Cal. RADIO-I is evolving into a Cal. RADIO-II develop platform with basic DSP board and multiple RF front-end modules such as 802. 11 x, 802. 16, cell and general RF. This will eventually allow the capability of publishing standards in software/firmware and hardware. IFA’ 05 ECE 6610 107

Academic Research Testbeds The Broadband Wireless Network (BWN) Lab at Georgia Tech The WMN, Academic Research Testbeds The Broadband Wireless Network (BWN) Lab at Georgia Tech The WMN, called BWN-Mesh, consists of 15 IEEE 802. 11 b/g based mesh routers, among which several of them are connected to the next generation Internet testbed (also available in the BWN Lab) as backhaul access to the Internet. The testbed consists of laptops and desktops equipped with IEEE 802. 11 b and IEEE 802. 11 g cards located in various rooms on the floor Where the BWN Lab resides. By changing the topology of the network, experiments investigating the effects of inter-router distance, backhaul placement And clustering are performed along with mobility experiments using the Laptops in the testbed. IFA’ 05 ECE 6610 108

BWN-Mesh Testbed at Georgia Tech IFA’ 05 ECE 6610 109 BWN-Mesh Testbed at Georgia Tech IFA’ 05 ECE 6610 109

Academic Research Testbeds Moreover, experiments with existing protocols (i. e. , TCP, AODV, and Academic Research Testbeds Moreover, experiments with existing protocols (i. e. , TCP, AODV, and IEEE 802. 11 g as transport, routing, and MAC protocols) for BWN-Mesh testbed have demonstrated that these protocols do not perform well in terms of end-to-end delay and throughput in WMNs. Currently, the research is focused on adaptive protocols for transport layer, routing and MAC layers and their cross-layer design. These protocols are developed and evaluated on the BWN-Mesh testbed. IFA’ 05 ECE 6610 110

Academic Research Testbeds The approaches being explored in the BWN lab are not merely Academic Research Testbeds The approaches being explored in the BWN lab are not merely limited to Wi-Fi mesh networks but also applicable for wireless sensor networks (WSNs) and wireless sensor and actor networks (WSANs). Thus, the BWN-Mesh testbed is integrated with the already existing BWN Sensor Network Testbed, which consists of MICA motes, with Tiny. OS distributed software operating system, and light, temperature, acoustic actuator, magnometer, and accelerometer sensors. IFA’ 05 ECE 6610 111

Academic Research Testbeds In align with this effort, BWN Lab is also trying to Academic Research Testbeds In align with this effort, BWN Lab is also trying to integrate the current Wi-Fi mesh networks with other wireless networks such as Wi. MAX. Consequently, this integrated testbed will enable the design and evaluation of protocols applicable to heterogeneous wireless networks including WMNs, next Generation Internet, WSNs, WSANs, and Wi. MAX. IFA’ 05 ECE 6610 112

Industrial Practice Microsoft Research Lab (MSR) It implements ad-hoc routing and link quality measurement Industrial Practice Microsoft Research Lab (MSR) It implements ad-hoc routing and link quality measurement in a software module called the mesh connectivity layer (MCL). Architecturally, MCL is a loadable Windows driver. It implements a virtual network adapter, so that the ad-hoc network appears as an additional (virtual) network link to the rest of the system. MCL routes by using a modified version of DSR called LQSR. IFA’ 05 ECE 6610 113

Industrial Practice MCL is a routing protocol well-suited for low mobility, unconstraint power consumption Industrial Practice MCL is a routing protocol well-suited for low mobility, unconstraint power consumption and small diameter networks. The MCL driver implements an interposition layer between the link layer and the network layer. To higher layer software, MCL appears to be just another Ethernet link, albeit a virtual link. IFA’ 05 ECE 6610 114

Industrial Practice No modification to either network stack is required. Network layer functionality (for Industrial Practice No modification to either network stack is required. Network layer functionality (for example ARP, DHCP, and Neighbor Discovery) works fine. Ad-hoc routing runs over heterogeneous link layers. Microsoft's implementation supports Ethernet-like physical link layers (e. g. , IEEE 802. 11 and 802. 3) but the architecture accommodates link layers with arbitrary addressing and framing conventions. IFA’ 05 ECE 6610 115

Industrial Practice INTEL: Low-cost and low-power access point prototypes have been developed to enable Industrial Practice INTEL: Low-cost and low-power access point prototypes have been developed to enable further research on security, traffic characterization, dynamic routing and configuration, and Qo. S problems. A demonstration was discussed in various occasions, consisting of a collection of Centrino laptop computers and IXP 425 network processor based routers running AODV and 802. 11 b MAC protocols. The testbed results confirm that 802. 11 MAC limits full exploitation of multihop throughput. IFA’ 05 ECE 6610 116

Industrial Practice As a means to enhance multihop throughput, it advocates spatial reuse through Industrial Practice As a means to enhance multihop throughput, it advocates spatial reuse through carrier sensing threshold tuning. Another potential solution experimented was the concept of heterogeneous networks: an 802. 11 mesh network comprised of 4 high-end nodes, such as Intel XScale based nodes, is overlaid on a 50 -sensor node (motes) network scattered throughout a large conference room. Sensor data can enter and exit the 802. 11 backbone at multiple interchanges (the XScale nodes) in order to bypass the intermediate sensors. IFA’ 05 ECE 6610 117

Industrial Practice NORTEL: n A peer-to-peer architecture—with smart antennas, integrated routers and adaptive routing Industrial Practice NORTEL: n A peer-to-peer architecture—with smart antennas, integrated routers and adaptive routing and security capabilities—to backhaul data wirelessly to wired broadband networks. This minimizes the need for expensive wired backhaul connections, such as T 1 lines. n Nortel Networks Wireless Mesh Network solution is comprised of three main network elements: – Wireless Access Point 7220 (Wireless AP) The Wireless AP performs traffic collection and distribution functions for traffic within the Community Area Network (CAN) and incorporates: routing and wireless transit functions; security functions for validating connections to other Wireless APs; security functions for controlling access by user devices; and low-cost advanced antenna designs for extended reach, simplified deployment and reliability. IFA’ 05 ECE 6610 118

Industrial Practice – Wireless Gateway 7250 The Wireless Gateway advertises reachability for one or Industrial Practice – Wireless Gateway 7250 The Wireless Gateway advertises reachability for one or more IP subnets assigned to Wireless LAN CAN subscribers and network entities. – In addition, the Wireless Gateway hides Wireless LANspecific mobility and provides data security for the mesh transit links (between Wireless AP 7220 s). – Optivity Network Management System The Optivity Network Management System provides centralized facilities for monitoring and managing network operations, including discovery and visualization of Wireless AP 7220 and Wireless Gateway 7250, fault management, and real-time performance metrics. IFA’ 05 n ECE 6610 119

Industrial Practice NORTEL n IFA’ 05 ECE 6610 120 Industrial Practice NORTEL n IFA’ 05 ECE 6610 120

Industrial Practice Mesh. Networks' Initial attempt to commercializing mesh technology was its Quadrature Division Industrial Practice Mesh. Networks' Initial attempt to commercializing mesh technology was its Quadrature Division multiple access (QDMA) radio platform. The QDMA radio is designed for mobile ad hoc broadband networking. It uses multi-channel MAC and PHY to overcome the effects of Doppler shifting, rapid Raleigh fading and multipath encountered in a mobile system. The Mesh. Networks' scalable routing protocol is implemented above QDMA radios. The scalable routing technology utilizes a hybrid ad hoc routing algorithm that combines both proactive and reactive routing techniques. IFA’ 05 ECE 6610 121

Industrial Practice To adapt the routing protocol to a given radio platform, adaptive Transmission Industrial Practice To adapt the routing protocol to a given radio platform, adaptive Transmission protocol (ATP) is implemented to tightly bind the scalable routing protocol to the underlying radio platform. Mesh. Networks provides a software-only overlay solution that lets native 802. 11 b clients in existing networks work in mesh-mode. While it will not add any mobile broadband capabilities beyond what 802. 11 b can already support, it will extend the range and link robustness of existing Wi-Fi Networks by allowing mesh-style multi-hopping. Security features in Mesh. Networks' QDMA-based systems include a hardware firewall on a chip that makes it impossible for a client to access somebody else's packets. IFA’ 05 ECE 6610 122

Industrial Practice Tropos Networks employs a cellular Wi-Fi network architecture to support “infrastructure mesh” Industrial Practice Tropos Networks employs a cellular Wi-Fi network architecture to support “infrastructure mesh” networking, using its a layer-3 network operating system (NOS) called Tropos Sphere, that runs on standard 802. 11 hardware and software. Tropos Sphere operates on every (small sized) Tropos Wi-Fi cell and contains the key communications, path selection, and security functions that allow the Wi-Fi cells to inter-operate and form a completely wireless network like a wireless routed LAN. Tropos uses a lightweight control protocol for supporting a large number of Wi-Fi cells. IFA’ 05 ECE 6610 123

Industrial Practice It uses a proprietary predictive path optimization protocol to improve enduser throughput Industrial Practice It uses a proprietary predictive path optimization protocol to improve enduser throughput and continuously optimize performance to compensate for the changing RF environment. This protocol is called predictive wireless routing protocol (PWRP), which is analogous to traditional wired routing protocols such as OSPF). However, PWRP does not use routing tables or rely on hop-count only to select transmission paths. Rather, it compares packet error rates and other network conditions to determine the best path at a given moment. Since the system is largely a layer-3 solution that relies on the standard 802. 11 MAC protocol for a large mesh network, many of the throughput performance impairments remain unresolved. IFA’ 05 ECE 6610 124

INDUSTRIAL PRACTICE Packet. Hop's Core Technology (SRI International Lab) It consists of a network INDUSTRIAL PRACTICE Packet. Hop's Core Technology (SRI International Lab) It consists of a network controller, performing gateway, Qo. S, security, and roaming functions, a network management system, and the Windows software for ad hoc mesh routing. This is largely a layer-3 solution that runs on 802. 11 and multi-mode broadband radios. IFA’ 05 Packet. Hop is in collaboration with Nortel to complement Nortel's “infrastructure mesh” solution with its ad hoc meshing capability. ECE 6610 125

INDUSTRIAL PRACTICE Kiyon Inc. , is in field trials with building automation and “small INDUSTRIAL PRACTICE Kiyon Inc. , is in field trials with building automation and “small office home office'' (SOHO) customers of its broadband wireless mesh routers. Its technology is a layer-2/3 solution that implements a hybrid CSMA/CA and distributed TDMA MAC protocol atop an 802. 11 g/a physical layer. IFA’ 05 ECE 6610 126

INDUSTRIAL PRACTICE This is tightly coupled with a multi-metric “Attribute Routing'' protocol, aiming at INDUSTRIAL PRACTICE This is tightly coupled with a multi-metric “Attribute Routing'' protocol, aiming at high and steady multihop throughput in a mesh network. As the new generation 802. 11 radios adopt the soft MAC approach, e. g. , Atheros, Broadcom and more recently Intel, Kiyon's enhanced MAC/routing protocols can be implemented in host software and downloaded into these standard 802. 11 chipsets at runtime. Kiyon supports both infrastructure and client mesh, stationary or mobile wireless networks. IFA’ 05 ECE 6610 127

INDUSTRIAL PRACTICE Several routers form a broadband backbone of the network. Each of the INDUSTRIAL PRACTICE Several routers form a broadband backbone of the network. Each of the routers is equipped with Kiyon's routing and MAC protocol software plus a standard IEEE 802. 11 g/a radio. For client access to the broadband backbone, several options can be adopted. The first option is called the “wired host route”, in which a client can connect to the backbone via an Ethernet connection. IFA’ 05 ECE 6610 128

INDUSTRIAL PRACTICE Any IP capable devices (e. g. , a RFID reader, BACnet controller INDUSTRIAL PRACTICE Any IP capable devices (e. g. , a RFID reader, BACnet controller or database server) can be connected to the wireless network this way. No software modification on the client is required. The second option is called the “wireless host route”, in which a client device connects to the wireless network via a wireless LAN interface such as an 802. 11 b/g/a NIC. In this arrangement, the client is “homed” on one of the routers in the network that satisfies the defined routing metric, such as signal strength. IFA’ 05 ECE 6610 129

INDUSTRIAL PRACTICE The client has the option to run Kiyon's software or not. With INDUSTRIAL PRACTICE The client has the option to run Kiyon's software or not. With Kiyon's software, a client becomes a full function router. Without Kiyon's software, a client device running standard 802. 11 station software can originate and terminate traffic. Mobility of client devices is supported in both cases. The third option is a form of hierarchical network, in which a number of standard 802. 11 access points serve as the access layer for client devices. Each of these access points is attached to one of the backbone routers via an Ethernet connection. IFA’ 05 ECE 6610 130

Standard Activities IEEE 802. 11 Mesh Networks Currently, IEEE 802. 11 wireless networks can Standard Activities IEEE 802. 11 Mesh Networks Currently, IEEE 802. 11 wireless networks can achieve a peak rate of 11 Mbps (802. 11 b) and 54 Mbps (802. 11 a/g). Also under development is a high-bandwidth extension to the current Wi-Fi standard. Researchers expect 802. 11 n to increase the speed of Wi-Fi connections by 10 to 20 times. IFA’ 05 ECE 6610 131

Standard Activities Although many home users will not benefit from the additional speed right Standard Activities Although many home users will not benefit from the additional speed right away, because of limits on their cable or DSL connections, enterprises are hoping the technology will allow them to reduce the burden of laying and maintaining Ethernet cabling throughout the building. There are many academic testbeds and commercial deployment of mesh networks using IEEE 802. 11 wireless LAN technology. However, mesh networking is at the same stage as wireless LANs were in the early 1990's; they are expensive and proprietary. IFA’ 05 ECE 6610 132

Standard Activities To become commoditized, the economic pressures are driving the standard processes. Furthermore, Standard Activities To become commoditized, the economic pressures are driving the standard processes. Furthermore, protocols for 802. 11 ad hoc mode are insufficient for multihop and mesh networking, because of lack of scalability in the MAC protocol, resulting in poor network performance. A working group within IEEE 802. 11, called 802. 11 s, has been formed recently to standardize the extended service Set (ESS). 802. 11 s aims to define a MAC and PHY layers for meshed networks that extended coverage with no single point of failure. In such networks, 802. 11 cellular wireless LAN access points relay information from one to another in a router-like hop-by-hop fashion. IFA’ 05 ECE 6610 133

Standard Activities As users and access points are added, the capacity increases, as in Standard Activities As users and access points are added, the capacity increases, as in the Internet, giving rise to a scalable and redundant architecture. Early discussions in this working group include definition of WMNs, usage cases, Qo. S, architecture specifications, security, routing protocols, and development of new MAC protocols. Several task groups have been formed to tackle these issues. IFA’ 05 ECE 6610 134

Standard Activities Wi-Fi mesh networking can be implemented in two basic modes: infrastructure and Standard Activities Wi-Fi mesh networking can be implemented in two basic modes: infrastructure and client meshing. The former is an infrastructure ESS mesh, in which access points are interconnected through wireless links that enable automatic topology learning and dynamic path configuration. Clients are associated with access points and need not be aware of the mesh. Infrastructure meshing creates wireless backhaul mesh among access points or wireless routers. This reduces system backhaul costs while increasing network coverage and reliability. IFA’ 05 ECE 6610 135

Standard Activities To provide an IEEE 802. 11 ESS Mesh, 802. 11 s will Standard Activities To provide an IEEE 802. 11 ESS Mesh, 802. 11 s will define an architecture and protocol based on the IEEE 802. 11 MAC to create an IEEE 802. 11 wireless distribution system (WDS) that supports both broadcast/multicast and unicast delivery at the MAC layer using radio-aware metrics over self-configuring multi-hop topologies. From the view of access points, the infrastructure meshing also forms an ad hoc network among access points. The other mode of meshing, i. e. client meshing, is a layer-3 ad hoc IBSS (independent basic service set), in which all devices operate in ad hoc mode in a flat network, using IP routing. IFA’ 05 ECE 6610 136

Standard Activities There is no distinction between access points and client. Client meshing enables Standard Activities There is no distinction between access points and client. Client meshing enables wireless peer-to-peer networks to form between and among client devices and does not require any network infrastructure to be present. In this case, clients can hop through each other to reach other clients in the network. To maximize the benefit that meshing can offer, both modes should be supported simultaneously and seamlessly in a single network IFA’ 05 ECE 6610 137

Standard Activities IEEE 802. 15 Mesh Networks IEEE 802. 15. 3 a standard is Standard Activities IEEE 802. 15 Mesh Networks IEEE 802. 15. 3 a standard is based on Multi. Band OFDM Alliance (MBOA)'s physical layer that uses ultra wide band (UWB) to reach up to 480 Mbps. A competing proposal of a Direct Sequence-UWB (DS-UWB) claims support for up to 1. 3 Gbps. It is intended for high throughput personal area networking (PAN) that has communication distances of around 10 meters (or less), with applications in home networking space, with imminent wireless extensions to USB, IEEE 1394, and with the capability to address the convergence of PC, consumer electronics and IP mobile phones. IFA’ 05 Vendors planning to produce 802. 15. 3 a products have formed the Wi. Media Alliance, a branding and testing organization that will certify standards compliance. ECE 6610 138

Standard Activities UWB networks hold many advantages over other wireless networks, such as covert Standard Activities UWB networks hold many advantages over other wireless networks, such as covert communications, low power and cost requirement, accurate location information, and extra high bandwidth. However, the communication range is rather short. Mesh networks have been predicted to be the killer application for UWB radio systems. A new MAC proposed by MBOA, which deviates substantially from the original IEEE 802. 13 a MAC proposal, has added strong support for mesh networking and mobility, paving the way for UWB to enter the enterprise network. IFA’ 05 ECE 6610 139

Standard Activities The MBOA MAC uses piconet structure, combined with a decentralized resource-handling ability Standard Activities The MBOA MAC uses piconet structure, combined with a decentralized resource-handling ability to allow for the reservation of timeslots for 802. 15. 3 -like TDMA for high priority connections requiring determinism while assigning contention-based, best-effort access periods. IFA’ 05 ECE 6610 140

Standard Activities IEEE 802. 15. 4 is intended for telemetry with low data rate, Standard Activities IEEE 802. 15. 4 is intended for telemetry with low data rate, long battery life and low device cost requirements. The Zig. Bee Alliance is developing higher-level protocols that will run over 802. 15. 4 MAC and PHY layers that operate in unlicensed bands worldwide. Raw data rates of 250 Kbps can be achieved at 2. 4 GHz (16 channels), 40 Kbps at 915 MHz (10 channels), and 20 Kbps at 868 MHz (1 channel). The transmission distance is expected to range from 10 to 75 meters, depending on power output and environmental characteristics. IFA’ 05 ECE 6610 141

Standard Activities The Zig. Bee network layer supports multinetwork topologies including star, cluster tree, Standard Activities The Zig. Bee network layer supports multinetwork topologies including star, cluster tree, and mesh. In a mesh topology, a special node called coordinator is responsible for starting the network and for choosing key network parameters. The routing algorithm uses a request-response protocol to eliminate sub-optimal routing. Recently a new working group, i. e. , IEEE 802. 15. 5, is established to determine the necessary mechanisms in the physical and MAC layers to enable mesh networking in wireless PANs. IFA’ 05 ECE 6610 142

Standard Activities IEEE 802. 16 Mesh Networks While IEEE 802. 11 networks fulfill the Standard Activities IEEE 802. 16 Mesh Networks While IEEE 802. 11 networks fulfill the need for data services in a local area (i. e. last several hundreds of feet), IEEE 802. 16 aims at serving the broadband wireless access in metropolitan Area networks (i. e. , last mile), supporting point-to-multipoint connection oriented Qo. S communications to extend fiber optic backbones. The original 802. 16 standard operates in the 10 -66 GHz frequency band requires line-of-sight towers. IFA’ 05 ECE 6610 143

Standard Activities The 802. 16 a extension, ratified in January 2003, uses a lower Standard Activities The 802. 16 a extension, ratified in January 2003, uses a lower frequency of 2 -11 GHz, enabling nonline-of-sight connections. With 802. 16 a, carriers will be able to connect more customers to a single tower and substantially reduce service costs. To allow consumers to connect to the Internet while moving at vehicular speeds, researchers are developing an extension to IEEE 802. 16 standard called 802. 16 e. IFA’ 05 ECE 6610 144

Standard Activities To enhance the 802. 16 mesh, several proposals have been submitted to Standard Activities To enhance the 802. 16 mesh, several proposals have been submitted to the standard committee. A group within 802. 16, the Mesh Ad Hoc committee, is investigating ways to improve the performance of mesh networking. It is understood that only a small amount of meshing is required to see a large improvement in the coverage of a single base station. More importantly, the following issues are considered in specifying the 802. 16 mesh MAC protocol: * avoiding hidden terminal collisions, * selection of links, * synchronization, * power versus data rate tradeoffs, and * greater routing-MAC interdependence. IFA’ 05 ECE 6610 145

ADVANTAGES OF WMNs n Price: 802. 11 radios have become quite cheap, but the ADVANTAGES OF WMNs n Price: 802. 11 radios have become quite cheap, but the radios are often still among the most expensive elements of such a network. The fact that each mesh node runs both as a client and as a repeater potentially means saving on the number of radios needed and thus the total budget. n Ease and simplicity: If you have a box that is pre-installed with wireless mesh software and uses standard wireless protocols such as 802. 11 b/g, the setup is extremely simple. Since routes are configured dynamically, it is often enough to simply drop the box into the network, and attach whatever antennas are required for it to reach one or more existing neighboring nodes (assuming that we can solve the issue of IP address allocation). n Organization and business models: The decentralized nature of mesh networks lends itself well to a decentralized ownership model wherein each participant in the network owns and maintains their own hardware, which can greatly simplify the financial and community aspects of the system. IFA’ 05 ECE 6610 146

ADVANTAGES OF WMNs n Network robustness: The character of mesh topology and ad-hoc routing ADVANTAGES OF WMNs n Network robustness: The character of mesh topology and ad-hoc routing promises greater stability in the face of changing conditions or failure at single nodes, which will quite likely be under rough and experimental conditions. n Power: The substrate nodes of a mesh network can be built with extremely low power requirements, meaning that they can be deployed as completely autonomous units with solar, wind, or hydro power. Power generating units are typically connected to points of infrastructure and human presence. This makes them valid locations for network nodes. As a secondary benefit, the presence of integrated network nodes within power networks may allow for better monitoring and management. IFA’ 05 ECE 6610 147

ADVANTAGES OF WMNs n Integration: Mesh hardware is typically small, noiseless, and easily encapsulated ADVANTAGES OF WMNs n Integration: Mesh hardware is typically small, noiseless, and easily encapsulated in weatherproof boxes. This means it also integrates nicely outdoors as well as in human housing. n Reality fit: Reality rarely comes as a star, ring, or a straight line. In difficult terrain -- be that urban or remote -- where not every user can see one or few central points, chances are one can see one or more neighboring users. IFA’ 05 ECE 6610 148

FURTHER ADVANTAGES n Provides a value-added entry into the high-speed wireless packet and data FURTHER ADVANTAGES n Provides a value-added entry into the high-speed wireless packet and data business n Utilizes 802. 11 technology—the interface of choice for high-speed wireless packet data. n Offers high-speed wireless packet data access across a wider coverage area n Today's cellular systems do not provide the bandwidth available in WLANs. n Today's isolated hotspot 802. 11 deployments do not satisfy user desire for ubiquitous access or for mobility. n Emergence of small-form factor terminals with 802. 11 wireless interfaces means impending demand for adding mobility to WLAN packet data services. n Minimizes cost of capital, installation and commissioning n Utilizes low-cost 802. 11 technology. n Uses wireless links for backhaul to eliminate costs associates with installation of wired interconnect. IFA’ 05 ECE 6610 149

FURTHER ADVANTAGES n Auto-configuration algorithms in Wireless Access Point eliminate costs associated with engineering FURTHER ADVANTAGES n Auto-configuration algorithms in Wireless Access Point eliminate costs associated with engineering and organization of the wireless backhaul network. n Minimizes cost of operations n Uses wireless links for backhaul to eliminate costs associated with ongoing leasing of facilities. n Auto-configuration, self-organizing and self-healing are intrinsic to the Wireless Mesh Network solution n Centralized OAM&P minimizes staffing requirements. n Highly flexible in terms of capacity, coverage and availability n Increasing capacity, coverage and/or availability simply means deploying more Wireless Access Points. n Wireless Access Points maybe deployed indoors or outdoors. n IFA’ 05 ECE 6610 150

Ugly Truths 1. Radio is a shared medium and forces everyone to stay silent Ugly Truths 1. Radio is a shared medium and forces everyone to stay silent while one person holds the stage. Wired networks, on the other hand, can and do hold multiple simultaneous conversations. 2. In a single radio ad hoc mesh network, the best you can do is (1/2)^^n at each hop. So in a multi hop mesh network, the max available bandwidth available to you degrades at the rate of 1/2, 1/4, 1/8. By the time you are 4 hops away the max you can get is 1/16 of the total available bandwidth. IFA’ 05 ECE 6610 151

Ugly Truths 3. That does not sound too bad when you are putting together Ugly Truths 3. That does not sound too bad when you are putting together a wireless sensor network with limited bandwidth and latency considerations. It is DISASTROUS if you wish to provide the level of latency/throughput people are accustomed to with their wired networks. Consider the case of just 10 client stations at each node of a 4 hop mesh network. The clients at the last rung will receive -at best- 1/(16, 0000) of the total bandwidth at the root. IFA’ 05 ECE 6610 152

Ugly Truths 4. Why has this not been noticed as yet? Because first there Ugly Truths 4. Why has this not been noticed as yet? Because first there are not a lot of mesh networks around and second, they have not been tested under high usage situations. Browsing and email do not count. Try video - where both latency and bandwidth matter - or VOIP where the bandwidth is a measly 64 Kbps but where latency matters. Even in a simple 4 hop ad hoc mesh network with 10 clients, VOIP phones will not work well beyond the first or second hop – the latency and jitter caused by CSMA/CA contention windows (how wireless systems avoid collisions) will be unbearable. Mesh networks are a great concept. But the challenge lies in managing the dynamics of mesh networks so users receive an acceptable level of performance in terms of both latency and throughput. It is time to focus on solving some real problems to make mesh networks scale and provide stable performance. IFA’ 05 ECE 6610 153

Is this a Disruptive Technology? n In its vision of WLANs and wireless access Is this a Disruptive Technology? n In its vision of WLANs and wireless access networks of the very near future, Mesh Networks sees every client device also becoming a relay point or router for network traffic. n One immediate benefit is that such networks can in effect see around corners. n Even line-of-sight network technologies like 802. 11 can become non-line-of-sight - almost overnight if Mesh Networks can deliver what it is promising. n And the next-generation networks the company is building will also power mobile broadband services. IFA’ 05 ECE 6610 154

What is a Disruptive Technology? n What is a Disruptive Technology? n "In real-world terms, it has to meet at least two of three criteria: Be ten times cheaper than any alternative, have ten times higher performance, and ten times higher functionality. All three is best. " n There are two parts to Mesh Networks' supposedly disruptive technology. IFA’ 05 ECE 6610 155

WMNs as Disruptive Technology n One is QDMA (quad-division multiple access), a proprietary radio WMNs as Disruptive Technology n One is QDMA (quad-division multiple access), a proprietary radio technology developed for and currently used by WMNs. n QDMA's most notable characteristics are that it is IP from end to end and supports high-speed mobile broadband access and infrastructure-free "ad hoc peer-to-peer networking. " n The company claims it can deliver up to 6 Mbps to each user in a QDMA wireless network. n The technology also has built-in GPS capabilities and Qo. S (quality of service) for IP voice and video. IFA’ 05 ECE 6610 156

REMARKS n For Qo. S in the strict sense, there are doubts. n But REMARKS n For Qo. S in the strict sense, there are doubts. n But for Video and Data with a certain bandwidth, they will take off in wireless as the physical wireless capacity becomes really broadband reliable for mobile end users. n Because, currently, GSM/GPRS systems are widely used here for data and multimedia (to a certain degree, such video, image and sound captures with the camera of the phone) communication, although its data rate is very low data rates were around 14. 4 -20 IFA’ 05 ECE 6610 as small cellular GPRS 157

REMARKS n However, the interest of the people and the success in the implementation REMARKS n However, the interest of the people and the success in the implementation draws big companies' attention. n Especially the future application of Mesh networks is considered to realize Mobile Wi. Fi by integrating Mesh Enabled Architecture (MEA) architecture with 802. 11 access points. n MEA consists of wireless cards, cheap mesh wireless routers, portable wireless routers, and intelligent access points IFA’ 05 ECE 6610 158

Wireless Mesh Networks Case Studies n Medford, OR (70, 000 people) 24 square miles Wireless Mesh Networks Case Studies n Medford, OR (70, 000 people) 24 square miles – broadband communications ROI – 8 months possible $770, 000 to install n Garland, TX (221, 000 people) 57 square miles – broadband communications Cost Avoidance – subscription fees / cell towers IFA’ 05 ECE 6610