
Презентация (биологические мембраны).ppt
- Количество слайдов: 33
БИОЛОГИЧЕСКИЕ МЕМБРАНЫ
Все клетки, а также их органеллы окружены мембранами, которые играют важную роль как в структурной организации, так и в функционировании клеток и клеточных органелл. Согласованное функционирование мембранных систем рецепторов, ферментов, транспортных механизмов помогает поддерживать гомеостаз клетки и в то же время быстро реагировать на изменения внешней среды.
Основные функции мембран: • отделение клетки от окружающей среды и формирование внутриклеточных компартментов (отсеков); • контроль и регулирование транспорта огромного разнообразия веществ через мембраны; • участие в обеспечении межклеточных взаимодействий, передаче внутрь клетки сигналов; • преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ.
Основные принципы структурной организации всех мембран одинаковы. Однако плазматическая мембрана, ЭПР, аппарат Гольджи, митохондриальная и ядерная мембраны имеют существенные структурные различия, они уникальны по своему составу и характеру выполняемых функций.
Плазматическая мембрана Определяет размер каждой клетки, обеспечивает транспорт малых и больших молекул из клетки и в клетку, поддерживает разницу концентраций ионов по обе стороны мембраны. Участвует в межклеточных контактах, воспринимает, усиливает и передаёт внутрь клетки сигналы внешней среды. С мембраной связаны многие ферменты, катализирующие биохимические реакции.
Ядерная мембрана Ядерная оболочка состоит из внешней и внутренней ядерных мембран. Ядерная оболочка имеет поры, через которые РНК проникают из ядра в цитоплазму, а регуляторные белки из цитоплазмы в ядро. Внутренняя ядерная мембрана содержит специфические белки, имеющие участки связывания основных полипептидов ядерного матрикса. Важная функция этих белков - дезинтеграция ядерной оболочки в процессе митоза.
Мембрана эндоплазматического ретикулума (ЭР) Мембрана ЭР имеет многочисленные складки и изгибы. Она образует поверхность, ограничивающую внутреннее пространство, называемое полостью ЭР. Шероховатый ЭР связан с рибосомами, на которых происходит синтез белков плазматической мембраны, ЭР, аппарата Гольджи, лизосом. Области ЭР, не содержащие рибосом, называют гладким ЭР. Здесь происходит биосинтез холестерина, фосфолипидов, реакции окисления собственных метаболитов и чужеродных веществ с участием цитохрома Р 450, цитохром Р 450 редуктазы, цитохром b 5 редуктазы и цитохрома b 5.
Аппарат Гольджи - важная мембранная органелла, отвечающая за модификацию, накопление, сортировку и направление различных веществ в соответствующие внутриклеточные компартменты, а также за пределы клетки. Специфические ферменты мембраны комплекса Гольджи, гликозилтрансферазы, гликозилируя белки по остаткам серина, треонина или амидной группе аспарагина, завершают образование сложных белков - гликопротеинов.
Митохондриальные мембраны Митохондрии - органеллы, окружённые двойной мембраной, специализирующиеся на синтезе АТФ путём окислительного фосфорилирования. Отличительная особенность внешней митохондриальной мембраны - содержание большого количества белка порина, образующего поры в мембране. Благодаря порину внешняя мембрана свободно проницаема для неорганических ионов, метаболитов и даже небольших молекул белков (меньше 10 к. Д). Для больших белков внешняя мембрана непроницаема, это позволяет митохондриям их удерживать. Для внутренней мембраны митохондрий характерно высокое содержание белков, около 70%, которые выполняют в основном каталитическую и транспортную функции. Транслоказы мембраны обеспечивают избирательный перенос веществ из межмембранного пространства в матрикс и в обратном направлении, ферменты участвуют в транспорте электронов (цепи переноса электронов) и синтезе АТФ.
Мембрана лизосом играет роль "щита" между активными ферментами, обеспечивающими реакции распада белков, углеводов, жиров, нуклеиновых кислот, и остальным клеточным содержимым. Мембрана содержит уникальные белки, АТФ-зависимую протонную помпу (насос), которая поддерживает кислую среду (р. Н 5), необходимую для действия гидролитических ферментов (протеаз, липаз), а также транспортные белки, позволяющие продуктам расщепления макромолекул покидать лизосому. Большинство белков лизосомальной мембраны сильно гликозилированы, углеводные составляющие, находящиеся на внутренней поверхности мембраны, защищают их от действия протеаз.
СТРОЕНИЕ И СОСТАВ МЕМБРАН Биологические мембраны построены из липидов и белков, связанных друг с другом с помощью нековалентных взаимодействий. Основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды, гликолипиды и холестерол. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы растворены в липидном бислое.
СТРОЕНИЕ ПЛАЗМАТИЧЕСКОЙ МЕМБРАНЫ
Структура и свойства липидов мембран Липиды мембран - амфифильны, т. е. в молекуле есть как гидрофильные группы (полярные "головки"), так и алифатические радикалы (гидрофобные "хвосты"), самопроизвольно формирующие бислой. В большинстве эукариотических клеток они составляют около 30 -70% массы мембраны. Содержание липидов и белков в различных клеточных мембранах (%.
В мембранах присутствуют липиды трёх главных типов – • фосфолипиды, • гликолипиды • холестерол
Фосфолипиды глицерофосфолипиды сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространённые глицерофосфолипиды мембран - фосфатидилхолины и фосфатидилэтаноламины
В мембранах эукариотических клеток обнаружено огромное количество разных фосфолипидов, причём они распределены неравномерно по разным клеточным мембранам. Эта неравномерность относится к распределению как полярных "головок", так и ацильных остатков.
Фосфолипи ды с разным строением полярных « головок" Доля от суммарного количества фосфолипидов, % митохондри лизосомы и ядерная мембрана аппарата Гольджи мембраны плазматиче ская мембрана Кардиолипи н 18 1 4 1 1 Фосфатидил этаноламин 35 14 13 20 23 Фосфатиди л холин Фосфатиди линозитол 40 40 55 50 39 5 5 10 12 8 Фосфатиди л серин Фосфатидн ая кислота 1 2 3 6 9 - 1 2 1 1 Сфингомие лин 1 20 3 8 16
Каждый глицерофосфолипид, например фосфатидилхолин, представлен несколькими десятками фосфатидилхолинов, отличающихся друг от друга строением жирно-кислотных остатков. На долю глицерофосфолипидов (полярная группа инозитол) приходится лишь 2 -8% всех фосфолипидов, содержащихся в клеточной мембране эукариотов. Инозитол в составе фосфатидилинозитолов может быть фосфорилирован по С 4 (фосфатидилинозитол-4 -монофосфат) или С 4 и С 5 (фосфатидилинозитол-4, 5 -бисфосфат). В состав фосфатидилинозитол-4, 5 -бисфосфатов входят в основном ацильные остатки стеариновой или пальмитиновой (по первому положению глицерола) и арахидоновой (по второму положению) жирных кислот.
Специфические фосфолипиды внутренней мембраны митохондрий - кардиолипины (дифосфатидилглицеролы), построенные на основе глицерола и двух остатков фосфатидной кислоты. Они синтезируются ферментами внутренней мембраны митохондрий и составляют около 22% от всех фосфолипидов мембраны.
В плазматических мембранах клеток в значительных количествах содержатся сфингомиелины. Сфингомиелины построены на основе церамида ацилированного аминоспирта сфингозина. Полярная группа состоит из остатка фосфорной кислоты и холина, этаноламина или серина. Сфингомиелины - главные липиды миелиновой оболочки нервных волокон.
Гликолипиды В гликолипидах гидрофобная часть представлена церамидом. Гидрофильная группа - углеводный остаток, присоединённый гликозидной связью к гидроксильной группе у первого углеродного атома церамида. В зависимости от длины и строения углеводной части различают цереброзиды, содержащие моно- или олигосахаридный остаток, и ганглиозиды, к ОН-группе которых присоединён сложный, разветвлённый олигосахарид, содержащий N-ацетилнейраминовую кислоту (NANA).
Полярные "головки" гликосфинголипидов находятся на наружной поверхности плазматических мембран. В значительных количествах гликолипиды содержатся в мембранах клеток мозга, эритроцитов, эпителиальных клеток. Ганглиозиды эритроцитов разных индивидуумов различаются строением олигосахаридных цепей, проявляющих антигенные свойства.
Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жёсткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является "полярной головкой". Молекула холестерола располагается в липидном слое мембраны параллельно алифатическим цепям молекул фосфои гликолипидов. Гидроксильная группа холестерола контактирует с гидрофильными "головками" этих липидов.
Для животной клетки среднее молярное отношение холестерол/фосфолипиды равно 0. 3 -0. 4, но в плазматической мембране это соотношение гораздо выше (0. 8 -0. 9). Наличие холестерола в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и белков, и поэтому может влиять на функции: мембранных белков. В составе мембран растений холестерола нет, а присутствуют растительные стероиды - ситостерол и стигмастерол.
Трансмембранная асимметрия липидов Каждая мембрана клетки замкнута, т. е. имеет внутреннюю и внешнюю поверхности, различающиеся по липидному и белковому составам эту особенность мембран называют трансмембранной (поперечной) асимметрией. Липидная асимметрия возникает прежде всего потому, что липиды с более объёмными полярными "головками" стремятся находиться в наружном монослое, так как там площадь поверхности, приходящаяся на полярную "головку", больше. Фосфатадилхолины и сфингомиелины локализованы преимущественно в наружном монослое, а фосфатидилэтаноламины и фосфатидилсерины в основном во внутреннем.
Липиды в некоторых биологических мембранах с довольно большой частотой мигрируют с одной стороны мембраны на другую, т. е. совершают "флип-флоп" (от англ, flip-flop) перескоки. Перемещение липидных молекул затрудняют полярные "головки", поэтому липиды, находящиеся на внутренней стороне мембраны, имеют относительно высокую скорость трансмембранной миграции по сравнению с липидами наружной стороны мембраны, мигрирующих медленнее или вообще не совершающими «флип-флоп» перескоки.
Жидкостностъ мембран Для мембран характерна жидкостность (текучесть), способность липидов и белков к латеральной диффузии. Скорость перемещения молекул зависит от микровязкости мембран, которая, в свою очередь, определяется относительным содержанием насыщенных и ненасыщенных жирных кислот в составе липидов. Микровязкость меньше, если в составе липидов преобладают ненасыщенные жирные кислоты, и больше при высоком содержании насыщенных жирных кислот.
Алифатические остатки ненасыщенных жирных кислот имеют так называемые "изломы". Эти "изломы" препятствуют слишком плотной упаковке молекул в мембране и делают её более рыхлой, а следовательно и более "текучей". На текучесть мембран также влияют размеры углеводородных "хвостов" липидов, с увеличением длины которых мембрана становится более "текучей".
Функции мембранных липидов • формирование липидного бислоя – структурной основы мембран • обеспечивают необходимую для функционирования мембранных белков среду • участвуют в регуляции активности ферментов • служат «якорем» для поверхностных белков (к фосфатидилинозитолам через олигосахарид могут присоединяться специфические белки наружной поверхности клетки) • участвуют в передаче гормональных сигналов (Фосфатидилинозитол-4, 5 -бисфосфат (ФИФ 2) под действием фермента фосфолипазы С гидролизуется до диацилглицерола (ДАТ), активатора протеинкиназы С и инозитол-1, 4, 5 -трифосфата (ИФ 3) - регулятора кальциевого обмена в клетке)
Особенности строения и локализации белков в мембранах Мембранные белки, контактирующие с гидрофобной частью липидного бислоя, должны быть амфифильными. Те участки белка, которые взаимодействуют с углеводородными цепями жирных кислот, содержат преимущественно неполярные аминокислоты. Участки белка, находящиеся в области полярных "головок", обогащены гидрофильными аминокислотными остатками. Белки мембран различаются по своему положению в мембране.
1 - гпикофорин А; 2 - рецептор адреналина. Поверхностные белки: 3 - белки, связанные с интегральными белками, например, фермент сукцинатдегидрогеназа; 4 - белки, присоединённые к полярным "головкам" липидного слоя, например, протеинкиназа С; 5 - белки, "заякоренные" в мембране с помощью короткого гидрофобного концевого домена, например, цитохром b 5; 6 - "заякоренные" белки, ковалентно соединённые с липидом мембраны (например, фермент щелочная фосфатаза).
Латеральная диффузия белков Некоторые мембранные белки перемещаются вдоль бислоя (латеральная диффузия) или поворачиваются вокруг оси, перпендикулярно его поверхности. Например, фермент фосфолипаза А 2, связываясь с цитоплазматической поверхностью мембраны, может латерально перемещаться по поверхности бислоя и гидролизовать несколько тысяч фосфолипидов в минуту до тех пор, пока не отделится от мембраны. Латеральная диффузия интегральных белков в мембране ограничена, это связано с их большими размерами, взаимодействием с другими мембранными белками, элементами цитоскелета или внеклеточного матрикса. Белки мембран не совершают перемещений с одной стороны мембраны на другую ("флип-флоп" перескоки), подобно фосфолипидам
Презентация (биологические мембраны).ppt