a0c86c415e827b8e9b9984658f259bd9.ppt
- Количество слайдов: 16
Astmed ja juured
Astme mõiste. Definitsioon Ühest suurema naturaalarvu n korral nimetatakse astmeks an korrutist, milles on n võrdset tegurit a, s. t. Näited 1 kilobait =
Astendajad 0 ja 1 Astme an leidmist nimetatakse astendamiseks, arvu a astendatavaks (e. astme aluseks) ning arvu n astendajaks (ehk astmenäitajaks). Kui astendaja on 1 või 0, siis defineeritakse arvu aste nii: Näited
Negatiivne astendaja. Negatiivse astendajaga aste defineeritakse võrdusega Näited
Ratsionaalarvuline astendaja. Ratsionaalarvulise (murrulise) astendajaga aste defineeritakse võrdusega Kui n on paarisarv, siis peab reaalarvude korral olema alus a mittenegatiivne arv. Näited
Irratsionaalarvuline astendaja. Irratsionaalarvulise astendajaga aste defineeritakse seosega kus (rn) on suvaline ratsionaalarvude jada, mille piirväärtuseks on irratsionaalarv s (näiteks, (rn) on arvu s puuduga lähismurdude jada). Alus a peab olema irratsionaalse astendaja korral olema mittenegatiivne. Näited
Astme omadusi. 1. Kui a > 0, siis ar > 0 igasuguse reaalarvulise astendaja r puhul. 2. 3. 4. 1 r = 1.
Tehted astmetega. 1. Võrdsete alustega astmete korrutamisel tuleb astendajad liita: Näited 2. Võrdsete astendajatega astmete korrutamisel alused korrutatakse: Näited
Tehted astmetega. 3. Võrdsete alustega astmete jagamisel astendajad lahutatakse: Näited 4. Võrdsete astendajatega astmete jagamisel alused jagatakse: Näited
Tehted astmetega. 5. Astme astendamisel astendajad korrutatakse: Näited
Juure mõiste. Astendamise pöördtehet nimetatakse juurimiseks. See pöördtehe on defineeritud vaid ühest suuremate naturaalarvude korral. Antud astendaja n > 1 ning arvu a korral tähendab see sellise arvu b leidmist, et bn = a. Juurimistehte tulemust tähistatakse sümboliga , mida nimetatakse n -nda astme (ehk ka n-ndaks) juureks arvust a. Arvu n nimetatakse sealjuures juurijaks ja arvu a juuritavaks. Näide Kuna juurija juuritav Kui juurijaks on 2, siis jäetakse juurija kirjutamata ning kasutatakse sümbolit , mida nimetatakse ruutjuureks arvust a. Kui juurijaks on 3, siis nimetatakse juurt kuupjuureks. Näide
Juure mõiste. Paarituarvulise juurija korral on juurimistehte tulemus määratud üheselt iga reaalarvu a korral. Näiteks on võrrandi ainukeseks lahendiks x = -2 ja seega Paarisarvulise juurija korral peame juurimistehte tulemuse ühesuse tagamiseks tegema lisaeelduse: kui juurija n on paarisarv, siis a > 0 korral juur positiivset arvu, mille n-es aste on a. Näide ja ehkki nii kui ka tähistab niisugust
Juure omadused. 1. Igal positiivsel arvul a on parajasti üks positiivne n-es juur. 2. Negatiivsel arvul ei ole paarisarvulise juurijaga juurt. 3. Igal negatiivsel arvul on parajasti üks paaritu juurijaga juur, mis on samuti negatiivne. 4. Iga n puhul 5. 6. 7.
Tehted juurtega. 1. Võrdsete juurijatega juurte korrutamisel korrutatakse juuritavad: Näited 2. Võrdsete juurijatega juurte jagamisel jagatakse juuritavad: Näited
Tehted juurtega. 3. Juure astendamisel astendatakse juuritav: Näited 4. Juure juurimisel korrutatakse juurijad Näide
Tehted juurtega. 5. Juure taandamise ja laiendamise valem: Astme juurimisel võib astendajat ja juurijat jagada või korrutada ühe ja sama arvuga Näide