650e14708c907f3bb76c1fef83fde4a1.ppt
- Количество слайдов: 18
ASRR Conference: Engineered Resilient Systems Panel Ensuring Engineered Resilient Total-Ship Systems: Using More Physics-Based Design Tools in Early Concept Design Bob Keane, Ship Design USA, Inc. 5 October 2011 Opinions are those of the author and not those of any Government agency or program.
Inseparable Resilience Issues Dr. Robert Neches, OASD(R&E), 31 March 2011 l Rapidly Adapting to User Needs – Warfighter / Engineer Information Exchange l Accelerated Needs Exploration: Conceptual Design – Co-Evolution of Con. Ops & Systems for Multiple Alternative Futures l Accelerated Design-to-Build: Capability Engineering l Advances must be embedded in tools and environments accessible to Government and industry – Systems 2020 2
Nature of the Product-A Warship • • A “system of systems”: Operate in battle force with older and newer ships Very low quantities, high unit cost, long lives Extremely complex product: millions of piece parts No prototypes, first ship(s) must be fully operational Government develops combat/weapons/communications systems Government ultimately assumes responsibility for meeting requirements Lack of commercial shipbuilding industrial base to build upon Intense Congressional oversight 5/3 -6/05 Summer Naval Surface Ship Design Program 3
USS MIDWAY 50 -Year Global Crisis Response Italy Elections 1947 Korean Tree Incident 1976 Iranian Hostage Crisis 1979 Afghanistan Invasion 1979 Fiery Vigil 1991 Laos 1961 Lebanon 1950 5/3 -6/05 Desert Shield / Desert Storm 1990– 91 Quemoy. Matsu 1958 Earnest Will 1987– 1988 Philippine Coup 1989 Vietnam 1965– 1975 Summer Naval Surface Ship Design Program 4
Collaborative Innovation in Fleet Design, 1922 -1941 Naval War Op. Nav College The General Board The Fleet The Bureaus Agents of Innovation: The General Board and the Design of the Fleet That Defeated the Japanese Navy, John T. Kuehn, Naval Institute Press, 2008
MIT'S VON HIPPEL: INNOVATION, LEAD USER ANALYSIS, CUTTING CONCEPT TIME & COST l “…sometimes it's a waste of time and resources to try to understand customer needs… l sometimes it's less expensive and more efficient to – let your customers define the needs, – limit yourself to offering solutions, and – let the customers design based on that. ” 6
Experience and the Right Tools Make A BIG Difference Lack of Experience Highly Experienced Smart, Physics. Based Tools l 1980 s Reagan Buildup: Average Cost Growth for Lead Ship was 10%** – NAVSEA Highly Experienced Ship Design Workforce – User-Driven Design l 1990/2000 s Acquisition Rule-Based Tools Lack of Highly Experienced Experience Reform: Average Cost Growth for Lead Ship was 50%** – Inexperienced Industry Design Teams – Mfr. -Driven Design ** SEA 05 C, June 2008
Seaway Loads for Design of Surface Combatants: Rule-Based Design l Structural Design of FFG 7, CG 47, DDG 51 Classes – Interested more in extreme loading conditions than actual loads which contribute to fatigue – Worked with simplified loading envelopes – Deterministic analysis resulted in scantlings for maximum load expected – Highly random wave-induced loads were set of simplified hydrostatic loads under extreme seas No Physics-Based Computations nor Seakeeping Model Tests to Determine Actual Seaway Loads 8
Lack of Physics-Based Design Tools: Increased Ownership Costs l FFG 7 Class – Hull girder doubler plates & ballast added – Extensive deckhouse fatigue cracking l CG 52 Class (with VLS) – Serious hull cracking and buckling problem – Extensive superstructure fatigue cracking l DDG 51 Class – Bow structure buckling and cracking issue l Operational loads exceeded rule-based design loads $100 M’s in repairs for sustaining service-lives 9
“Outside-In Design” – Start with Hull Form, Then Cram Everything into Hull l Hull is sized and shaped in early design based on: – unreliable weight and area/volume estimates – invalid assumption volume is “arrangeable” – fallacy that limiting hull size limits ship costs Need architectural tools to optimize arrangements 10
Ships Possessing Greater Density Increase Production Cost 1200 Normalized First Ship Production (Hours / LT) DDG 1000 Combatant Designs FFG 800 CG Future DDG LPD 600 LHA LHD Future L-Ship DISTRIBUTED 400 LOG-RO/RO 200 LMSR AOE AVIATION RO/RO Auxiliary / Amphibs Designs LSD Hybrid Designs FLO/FLO 3 FLO/FLO 1 FLO/FLO 2 Legacy Hulls (Return Data) MPF(F) Notional Designs (Estimated Data) Commercial Designs 0 2. 0 3. 0 4. 0 5. 0 6. 0 7. 0 8. 0 9. 0 Outfit Density (lbs / cu ft) Ship Production hours increase with density and fall into predictable groupings. 11
WHERE WE NEED TO GO l According to an old proverb, if we do not change our direction, we might end up where we are headed. 12
Systems Engineering – Ensure “Elegant” Designs* l Effective – it does what it is supposed to do l Efficient – to produce, operate, maintain l Robust - insensitive to variations in operations l Minimal Unintended Consequences – few band aids required to fix it in-service *M. Griffin, Former NASA Director, Dean’s Seminar, SIT, “How do we fix System Engineering? ”, 13 Dec 2010 13
Toward Robust Systems Engineering: CREATE-SHIPS Project l Computational Research & Engineering for Acquisition Tools & Environments (CREATE): – Replace empirical design with validated physicsbased computational design – Detect and fix design flaws early in design process – Develop optimized designs for new concepts – Begin system integration earlier in acquisition process – Increase acquisition program flexibility and agility to respond to rapidly changing requirements Do. D High Performance Computing Modernization Program 14
Integrated Hydrodynamics Design Environment - IHDE RESISTANCE LOADS SEAKEEPING SHAPE OPTIMIZATION LOCAL HPC SSF TSD POWERING MANEUVERING DESIGN STUDIES HPCMP AUTOMATED VALIDATION CASES AEGIR DAS BOOT Problem Set Up SMP VERES Conditions FREDYN TEMPEST Geometry Navy. FOAM LAMP Automated Gridding DRIVER/GUI ASSET/LEAPS 15
Rapid Ship Design Environment (RSDE) Architecture Design Data Sets Rapid Ship Design Environment Multi-Discipline Optimization ASSET Synthesis SHCP-L Tkt Hullform Gen/Trans Hulltran Tkt Structure Geometry Hullform Geometry Stability Behaviors Seakeeping Behaviors NURBS Math 3/15/2018 Radial Basis Math GUI Execution Engine Behavior Object. Z Design Space Exploration SHCP-L Stability LEAPS API and Toolkits ISA Arrangement Hullgen Tkt IHDE Hydro Behavior. Man Tkt LEAPS Database Arrangement Geometry Subdivision Geometry Resistance Behaviors Structures Behaviors Flooding Behaviors GEML Kernel Kriging Math Neural Net Math 16
Modeling Warships in the Ocean Battle Space: Way Ahead l Need to start co-evolution of Con. Ops & systems for multiple alternative futures long before Milestone A – Continuing process not tied to specific acquisitions l Need engineers to have unfettered access to warfighters – Accelerated exploration during concept formulation – Collaborative process exploring new/radical innovations l Need more physics-based tools for concept design with – Timely pre-processing of system geometry – Timely post-processing of results into decision aids l Need to reconstitute Do. D S&T infrastructure – Do. D Labs resume their advanced development role 17
Center of Innovation in Ship Design is: The hub of a national collaborative enterprise combining the best ideas and experience of government, industry, and academia in ship design CISD Mission: Ensure the Future Capability (People, Tools and Knowledge) of the Nation to Develop Innovative Ship Designs to Effectively Meet Defense Needs Focus Areas: Navy of the Future • • Develop Future Ship Designers Knowledge Base / Design Tools & Processes Future Ship & Ship Design Technology Needs Develop Innovative Ship Design Concepts Chartered by ONR, NAVSEA 05 & NSWC CISD Overview - March 2010 APPROVED FOR PUBLIC RELEASE 18