Скачать презентацию Area scaling from entanglement in flat space quantum Скачать презентацию Area scaling from entanglement in flat space quantum

5fca939b79aaeec17f52cc8aa959c10e.ppt

  • Количество слайдов: 25

Area scaling from entanglement in flat space quantum field theory • Introduction • Area Area scaling from entanglement in flat space quantum field theory • Introduction • Area scaling of quantum fluctuations • Unruh radiation and Holography

Black hole thermodynamics J. Beckenstein (1973) S. Hawking (1975) SS A =¼A TH Black hole thermodynamics J. Beckenstein (1973) S. Hawking (1975) SS A =¼A TH

An ‘artificial’ horizon. out V in An ‘artificial’ horizon. out V in

Entropy: Sin=Tr( inln in) Srednicki (1993) Sin=Sout Entropy: Sin=Tr( inln in) Srednicki (1993) Sin=Sout

Entanglement entropy of a sphere Srednicki (1993) Entropy in out R 2 Entanglement entropy of a sphere Srednicki (1993) Entropy in out R 2

Other Thermodynamic quantities Heat capacity: More generally: ? A Other Thermodynamic quantities Heat capacity: More generally: ? A

A different viewpoint in Restricted measurements out No access = A different viewpoint in Restricted measurements out No access =

Area scaling of fluctuations R. Brustein and A. Y. , (2004) V 1 Assumptions: Area scaling of fluctuations R. Brustein and A. Y. , (2004) V 1 Assumptions: V 2 Oa. V 12 Ob. V 2

Area scaling of correlation functions Oa. V 1 Ob. V 2 = V 1 Area scaling of correlation functions Oa. V 1 Ob. V 2 = V 1 V 2 Oa(x) Ob(y) ddx ddy = V 1 V 2 Fab(|x-y|) ddx ddy = D( ) Fab( ) d = D( ) 2 g( ) d d-1 = Geometric term: - ∂ (D( )/ ) ∂ g( ) d D( )= V V d( x y ) ddx ddy Operator dependent term

Geometric term D( )= V 1 V 2 d( x y ) ddx ddy Geometric term D( )= V 1 V 2 d( x y ) ddx ddy = d( r) ddr dd. R V 2 V 1 dd. R A +O 2) d( r) ddr d-1 +O( d) D( )=C 2 A d + O( d+1)

Geometric term D( )= d( r) ddr dd. R V 1=V 2 dd. R Geometric term D( )= d( r) ddr dd. R V 1=V 2 dd. R V + A +O 2) d( r) ddr d-1 +O( d) D( )=C 1 V d-1 ± C 2 A d + O( d+1)

Area scaling of correlation functions Oa. V 1 Ob. V 2 = V 1 Area scaling of correlation functions Oa. V 1 Ob. V 2 = V 1 V 2 Oa(x)Ob(y) ddx ddy = V 1 V 2 Fab(|x-y|) ddx ddy = D( ) Fab( ) d = D( ) 2 g( ) d UV cuttoff at ~1/L = - ∂ (D( )/ d-1) d-1 ∂ g( ) d ∂ (D( )/ d-1) 1/L A D( )=C 1 V d-1 + C 2 A d + O( d+1)

Energy fluctuations Energy fluctuations

Intermediate summary V Tr( in. OV 2) Tr( in. OV) V Intermediate summary V Tr( in. OV 2) Tr( in. OV) V

Finding in in( ’in, ’’in) = Trout ( ’ ’’ Exp[-SE] Df D out Finding in in( ’in, ’’in) = Trout ( ’ ’’ Exp[-SE] Df D out +)= ’(x) f(x, 0)= (x) t f(x, 0 -)= ’’(x) f(x, 0+) = ’in(x) out(x) f(x, 0 -) = ’’in(x) out(x) ’in(x) in ’’in Exp[-SE] Df ’(x) ’’(x) x ’’in(x) f(x, 0+) = ’in(x) f(x, 0 -) = ’’in(x)

Finding rho Kabbat & Strassler (1994) in ’’in Exp[-SE] Df ’| e-b. K| ’’ Finding rho Kabbat & Strassler (1994) in ’’in Exp[-SE] Df ’| e-b. K| ’’ f(x, 0+) = ’in(x) f(x, 0 -) = ’’in(x) t ’in(x) x ’’in(x)

Rindler space (Rindler 1966) ds 2 = -dt 2+dx 2+Sdxi 2 Acceleration = a/ Rindler space (Rindler 1966) ds 2 = -dt 2+dx 2+Sdxi 2 Acceleration = a/ Proper time = t= /a sinh(a ) x= /a cosh(a ) ds 2 = -a 2 2 d 2+Sdxi 2 t =const = const x HR = Kx

Unruh Radiation (Unruh, 1976) ds 2 = -a 2 2 d 2+Sdxi 2 t Unruh Radiation (Unruh, 1976) ds 2 = -a 2 2 d 2+Sdxi 2 t = 0 Avoid a conical singularity a ≈ a +i 2 p x Periodicity of Greens functions Radiation at temperature b 0 = 2 p/a R= e-b. HR = e-b. K = in

Schematic picture V V VEVs in V of Minkowski space Observer in Minkowski space Schematic picture V V VEVs in V of Minkowski space Observer in Minkowski space with d. o. f restricted to V = Tr( in. OV) = Canonical ensemble in Rindler space (if V is half of space) Tr( ROV)

Other shapes R. Brustein and A. Y. , (2003) in ’’in Exp[-SE] Df b= Other shapes R. Brustein and A. Y. , (2003) in ’’in Exp[-SE] Df b= ’in|e-b. H 0| ’’out f(x, 0+) = ’in(x) f(x, 0 -) = ’’in(x) d/dt H 0 = 0 SE = 0 b. H 0 dt (x, t), +B. C. H 0=K, in={x|x>0} t ’in(x) x ’’in(x)

Evidence for bulk-boundary correspondence OV 1 OV 2 R. Brustein D. Oaknin, and A. Evidence for bulk-boundary correspondence OV 1 OV 2 R. Brustein D. Oaknin, and A. Y. , (2003) OV 1 OV 2 - OV 1 OV 2 V 1 V 2 Pos. of V 2 OV 1 OV 2 V 1 A 1 A 2 V 2 Pos. of V 2

A working example R. Brustein and A. Y. , (2003) Large N limit A working example R. Brustein and A. Y. , (2003) Large N limit

Summary Area scaling of Fluctuations due to entanglement Statistical ensemble due to restriction of Summary Area scaling of Fluctuations due to entanglement Statistical ensemble due to restriction of d. o. f V Unruh radiation and Area dependent thermodynamics V Boundary theory for fluctuations A A Minkowski observer restricted to part of space will observe: • Radiation. • Area scaling of thermodynamic quantities. • Bulk boundary correspondence*.

Speculations Area scaling of Fluctuations due to entanglement Theory with horizon (Ad. S, Schwarzschild) Speculations Area scaling of Fluctuations due to entanglement Theory with horizon (Ad. S, Schwarzschild) Statistical ensemble due to restriction of d. o. f ? V V Boundary theory for fluctuations ? A Israel (1976) Maldacena (2001) ?

Fin Fin