Скачать презентацию АНТИЧАСТИЦЫ И ОТКРЫТИЕ ПОЗИТРОНА АНТИЧАСТИЦА Античастица Скачать презентацию АНТИЧАСТИЦЫ И ОТКРЫТИЕ ПОЗИТРОНА АНТИЧАСТИЦА Античастица

Античастицы.pptx

  • Количество слайдов: 8

АНТИЧАСТИЦЫ И ОТКРЫТИЕ ПОЗИТРОНА АНТИЧАСТИЦЫ И ОТКРЫТИЕ ПОЗИТРОНА

АНТИЧАСТИЦА Античастица — частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем АНТИЧАСТИЦА Античастица — частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от неё знаками всех других характеристик взаимодействия (зарядов, таких как электрический и цветовой заряды, барионное и лептонное квантовые числа). Само определение того, что называть «частицей» в паре частица-античастица, в значительной мере условно. Однако при данном выборе «частицы» её античастица определяется однозначно. Сохранение барионного числа в процессах слабого взаимодействия позволяет по цепочке распадов барионов определить «частицу» в любой паре барион-антибарион. Выбор электрона как «частицы» в паре электрон-позитрон фиксирует (вследствие сохранения лептонного числа в процессах слабого взаимодействия) определение состояния «частицы» в паре электронных нейтрино-антинейтрино. Переходы между лептонами различных поколений не наблюдались, так что определение «частицы» в каждом поколении лептонов, вообще говоря, может быть произведено независимо. Обычно по аналогии с электроном «частицами» называют отрицательно заряженные лептоны, что при сохранении лептонного числа определяет соответствующие нейтрино и антинейтрино. Для бозонов понятие «частица» может фиксироваться определением, например, гиперзаряда.

СУЩЕСТВОВАНИЕ АНТИЧАСТИЦ Существование античастиц было предсказано П. А. М. Дираком. Полученное им в 1928 СУЩЕСТВОВАНИЕ АНТИЧАСТИЦ Существование античастиц было предсказано П. А. М. Дираком. Полученное им в 1928 году квантовое релятивистское уравнение движения электрона (уравнение Дирака) с необходимостью содержало решения с отрицательными энергиями. В дальнейшем было показано, что исчезновение электрона с отрицательной энергией следует интерпретировать как возникновение частицы (той же массы) с положительной энергией и с положительным электрическим зарядом, то есть античастицы по отношению к электрону. Эта частица — позитрон — была открыта в 1932 году. В последующих экспериментах было установлено, что не только электрон, но и все остальные частицы имеют свои античастицы. В 1936 году в космических лучах были открыты мюон (μ−) и μ+ его античастица, а в 1947 — π− и π+ — мезоны, составляющие пару частица — античастица; в 1955 в опытах на ускорителе зарегистрирован антипротон, в 1956 — антинейтрон, в 1966 — антидейтерий, в 1970 — антигелий, в 1998 — антиводород и т. д.

РОЖДЕНИЕ АНТИЧАСТИЦ Рождение античастиц происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог РОЖДЕНИЕ АНТИЧАСТИЦ Рождение античастиц происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог рождения пары частица-античастица (см. Рождение пар). В лабораторных условиях античастицы рождаются во взаимодействиях частиц на ускорителях; хранение образующихся античастиц осуществляют в накопительных кольцах при высоком вакууме. В естественных условиях античастицы рождаются при взаимодействии первичных космических лучей с веществом, например, атмосферы Земли, а также должны рождаться в окрестностях пульсаров и активных ядер галактик. Теоретическая астрофизика рассматривает образование античастиц (позитронов, антинуклонов) при аккреции вещества на чёрные дыры. В рамках современной космологии рассматривают рождение античастиц при испарении первичных чёрных дыр малой массы. При температурах, превышающих энергию покоя частиц данного сорта (в энергетической системе единиц), пары частица-античастица присутствуют в равновесии с веществом и электромагнитным излучением. Такие условия могут реализовываться для электронпозитронных пар в горячих ядрах массивных звёзд. Согласно теории горячей Вселенной, на очень ранних стадиях расширения Вселенной в равновесии с веществом и излучением находились пары частица-античастица всех сортов. В соответствии с моделями великого объединения эффекты нарушения С- и CPинвариантности в неравновесных процессах с несохранением барионного числа могли привести в очень ранней Вселенной к барионной асимметрии Вселенной даже в условиях строгого начального равенства числа частиц и античастиц. Это даёт физическое обоснование отсутствию наблюдательных данных о существовании во Вселенной объектов из античастиц.

АННИГИЛЯЦИЯ АНТИЧАСТИЦ При столкновении частицы со своей античастицей возможна их аннигиляция. АННИГИЛЯЦИЯ АНТИЧАСТИЦ При столкновении частицы со своей античастицей возможна их аннигиляция.

ПОЗИТРОН • Позитрон (от англ. positive — положительный) — античастица электрона. Относится к антивеществу, ПОЗИТРОН • Позитрон (от англ. positive — положительный) — античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд − 1 и массу, равную массе электрона. При аннигиляции позитрона с электроном их масса превращается в энергию в форме двух (и гораздо реже — трёх и более) гамма-квантов. • Позитроны возникают в одном из видов радиоактивного распада (позитронная эмиссия), а также при взаимодействии фотонов с энергией больше 1, 022 Мэ. В свеществом. Последний процесс называется «рождением пар» , ибо при его осуществлении фотон, взаимодействуя с электромагнитным полем ядра, образует одновременно электрон и позитрон. Также позитроны способны возникать в процессах рождения электрон-позитронных пар в сильном электрическом поле.

ОТКРЫТИЕ ПОЗИТРОНА Существование позитрона впервые было предположено в 1928 году Полем Дираком. Теория Дирака ОТКРЫТИЕ ПОЗИТРОНА Существование позитрона впервые было предположено в 1928 году Полем Дираком. Теория Дирака описывала не только электрон с отрицательнымэлектрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории. Позитрон был открыт в 1932 году американским физиком Андерсоном при наблюдении космического излучения с помощью камеры Вильсона, помещённой вмагнитное поле. Он сфотографировал следы частиц, которые очень напоминали следы электронов, но имели изгиб под действием магнитного поля, противоположный следам электронов, что свидетельствовало о положительном электрическом заряде обнаруженных частиц. Вскоре после этого открытия, также с помощью камеры Вильсона, были получены фотографии, проливавшие свет на происхождение позитронов: под действием γ-квантов вторичного космического излучения позитроны рождались в парах с обычными электронами. Такие свойства вновь открытой частицы оказались в поразительном согласии с уже имевшейся релятивистской теорией электрона Дирака. В 1934 году Ирен и Фредерик Жолио-Кюри во Франции открыли ещё один источник позитронов — β+радиоактивность.

АННИГИЛЯЦИЯ Из теории Дирака следует, что электрон и позитрон при столкновении должны аннигилировать с АННИГИЛЯЦИЯ Из теории Дирака следует, что электрон и позитрон при столкновении должны аннигилировать с освобождением энергии, равной полной энергии сталкивающихся частиц. Оказалось, что этот процесс происходит главным образом после торможения позитрона в веществе, когда полная энергия двух частиц равна их энергии покоя 1, 022 Мэ. В. На опыте были зарегистрированы пары γ-квантов с энергией по 0, 511 Мэ. В, разлетавшихся в прямо противоположных направлениях от мишени, облучавшейся позитронами. Необходимость возникновения при аннигиляции электрона и позитрона не одного, а как минимум двух γ-квантов вытекает из закона сохранения импульса. Суммарный импульс в системе центра масс позитрона и электрона до процесса превращения равен нулю, но если бы при аннигиляции возникал только один γ-квант, он бы уносил импульс, который не равен нулю в любой системе отсчёта.