
ae79eea5181c76dfa8f6e0304345d97b.ppt
- Количество слайдов: 63
Analyse von 82 Hirnaktivierungsxperimenten mit vier verschiedenen Wortproduktionsaufgaben: l Bildbenennung l Wortgenerierung (z. B. Nennen Sie möglichst viele Tiere!) l Wortlesen (HUND) l Pseudowortlesen (HUNG)
Talairach & Tournoux (1988) Lateral and medial view of reference brain
Reported at least once
Estimate of probability of overlap under the assumption of a random distribution of activated regions number of regions: 110 mean number of activated regions: r chance probability for a region to be reported as activated in a single experiment (p 1): r/110 chance probability for a region to be reported as activated in n 1 out of n experiments: (with n 1 + n 2 = n)
Reliability criterion: p < 0. 1 cut-off point in binomial distribution Example region 1 Number of experiments: 82 Mean number of reported regions: 12. 4 Reliably activated: 12 or more experiments Reliably not activated: 4 or less experiments Example region 2 Number of experiments: 23 Mean number of reported regions: 10. 4 Reliably activated: 5 or more experiments Reliably not activated: -
Zuverlässig aktivierte (rot) und nicht aktivierte (blau) Hirngebiete (basierend auf allen 82 Studien)
TASK ANALYSIS Many tasks were not just word production tasks; they involved other operations as well. For instance, when you name the picture of a horse, you not only produce the word 'horse', but you also look at the picture and recognize it. Such additional 'lead-in' operations involve the activation of additional brain regions. These should be filtered out. That requires a systematic task analysis, a distinction between 'lead-in' and 'core' operations of word production.
Responses during Verb Generation Task BANANA TROUSERS CHAIR GLASSES TRUMPET PENCIL BUTTON BIRD EAR DOOR peel, slip on, eat up, plant put on, wash, mend, buy, warm sit, build, nail, sell, work, learn clean, put on, step on, buy, see blow, make music, put away, hear, play sharpen, break, put away, draw tear off, close, open fly, eat up, sing hear, pinch open, close, kick against
Aufgabe Bildbenennung Einleitungsprozesse visuelle Objekterkennung Kernprozesse Konzeptuelle Vorbereitung lexikalisches Konzept lexikalische Selektion Lemma Wortlesen visuelle Worterkennung Wortformzugriff Wortform Pseudowortlesen Graphem/Phonem Konversion Syllabifizierung phonologisches Wort phonetische Enkodierung aussprechen vs. Wort “denken” abstraktes Motorprogramm Artikulation gesprochenes Wort Selbstmonitoring Wortgenerierung Worterkennung Objektvorstellung Gedächtnis etc.
Bildbenennung
Wortgenerierung
Bildbenennung (grün), Wortgenerierung (blau), gemeinsame Gebiete (rot)
Gemeinsame Aktivierungsgebiete von Bildbenennung und Wortgenerierung
Aufgabe Bildbenennung Einleitungsprozesse visuelle Objekterkennung Kernprozesse Konzeptuelle Vorbereitung lexikalisches Konzept lexikalische Selektion Lemma Wortlesen visuelle Worterkennung Wortformzugriff Wortform Pseudowortlesen Graphem/Phonem Konversion Syllabifizierung phonologisches Wort phonetische Enkodierung aussprechen vs. Wort “denken” abstraktes Motorprogramm Artikulation gesprochenes Wort Selbstmonitoring Wortgenerierung Worterkennung Objektvorstellung Gedächtnis etc.
Aufgabe Bildbenennung Einleitungsprozesse visuelle Objekterkennung Kernprozesse Konzeptuelle Vorbereitung lexikalisches Konzept lexikalische Selektion Lemma Wortlesen visuelle Worterkennung Wortformzugriff Wortform Pseudowortlesen Graphem/Phonem Konversion Syllabifizierung phonologisches Wort phonetische Enkodierung aussprechen vs. Wort “denken” abstraktes Motorprogramm Artikulation gesprochenes Wort Selbstmonitoring Wortgenerierung Worterkennung Objektvorstellung Gedächtnis etc.
Gemeinsame Aktivierungsgebiete von Bildbenennung, Wortgenerierung und Wortlesen
Aufgabe Bildbenennung Einleitungsprozesse visuelle Objekterkennung Kernprozesse Konzeptuelle Vorbereitung lexikalisches Konzept lexikalische Selektion Lemma Wortlesen visuelle Worterkennung Wortformzugriff Wortform Pseudowortlesen Graphem/Phonem Konversion Syllabifizierung phonologisches Wort phonetische Enkodierung aussprechen vs. Wort “denken” abstraktes Motorprogramm Artikulation gesprochenes Wort Selbstmonitoring Wortgenerierung Worterkennung Objektvorstellung Gedächtnis etc.
Gemeinsame Aktivierungsgebiete aller Aufgaben
Aussprechen im Vergleich zu Wort “denken”
Schematische Darstellung des Ergebnisses der Meta-Analyse von 82 Hirnaktivierungsstudien Indefrey, P. and Levelt, W. J. M. (2004) Cognition
The cognitive architecture of listening to language interpretation integration with other knowledge sources syntactic analysis word recognition thematic analysis phonological processing phonemes, syllables segmenting speech code decoding speech
Tekst Sereno Then once you have examined the city you can get a uh nice contrast to the surrounding country side uh a very unique country side which contrasts the distinction between the mountains to the uh low land of the coastal regions where there is a lot more uh fishing. Speech signal
0 1 2 3 4 5 6 7 8 9 10 snelheid proposities (rate of propositions) snelheid lexical access (rate of words) snelheid klanken (rate of phonemes) secon ds
mixing van alle vier speech signal rate of propositions rate of words rate of phonemes
Reversed speech versus silence
Word lists versus silence
Studies comparing auditory stimuli to silent baseline conditions Stimulus # Study Stimulus Belin 1998 200 ms frequency transition, 60/min 1 Mirz 1999 tones, 1000 Hz 19 Belin 1998 40 ms frequency transition, 60/min 2 Mirz 1999 tones, 1000 + 4000 Hz 20 Belin 1999 synthetic diphthong, 6/min 3 Mirz 1999 words 21 Binder 2000 tones, different frequencies, 90/min 4 Müller 1997 sentences, 12/min 22 Bookheimer 1998 pseudowords, 9/min 5 Petersen 1988 words, 60/min 23 Celsis 1999 syllables, 180/min 6 Price 1996 words, 40/min 24 Celsis 1999 tones, 500 + 700 Hz, 180/min 7 Price 1996 words, different rates 25 di Salle 2001 tones, 1000 Hz, 6/min 8 Suzuki 2002 a words, 60/min 26 Engelien 1995 environmental sounds, 10/min 9 Suzuki 2002 b tones, 1000 Hz, 60/min 27 Fiez 1996 pseudowords, 60/min 10 Thivard 2000 tones with spectral maxima, 60/min 28 Fiez 1996 words, 60/min 11 Warburton 1996 words, 4/min 29 Giraud 2000 vowels vs. expecting vowels, 120/min 12 Wise 1991 pseudowords, 40 or 60/min 30 Holcomb 1998 tones, 1500 Hz + lower tones, 30/min 13 Wong 1999 reversed sentences, 30/min 31 Jäncke 1999 tones, 1000 Hz, 60/min 14 Wong 1999 sentences, 30/min 32 Lockwood 1999 tones, 500 + 4000 Hz, 60/min 15 Wong 1999 words, 30/min 33 Mellet 1996 words, 30/min 16 Wong 2002 reversed words, 15/min 34 Mirz 1999 music 17 Wong 2002 sentences, 12/min 35 Mirz 1999 sentences 18 Wong 2002 words, 15/min 36 Study Indefrey & Cutler, 2004 #
Studies comparing auditory stimuli to simpler auditory stimuli Study Stimulus vs. control stimulus # Benson 2001 CVC > CV > V 1 Binder 1996 words vs. tones 2 Binder 2000 pseudo vs. tones 3 Binder 2000 reversed words vs. tones 4 Binder 2000 words vs. tones 5 Giraud 2000 amplitude modulated noise vs. noise 6 Giraud 2000 sentences vs. vowels 7 Giraud 2000 words vs. vowels 8 Hall 2002 frequency modulated vs. static tone 9 Hall 2002 harmonic vs. single tone 10 Jäncke 2002 syllables vs. 350 ms white noise bursts 11 Jäncke 2002 syllables vs. steady state portion of vowel 12 Jäncke 2002 syllables vs. tones 13 Müller 2002 90% 1000 Hz + 10% 500 Hz vs. 1000 Hz 14 Mummery 1999 words vs. signal correlated noise 15 Price 1996 words vs. reversed words 16 Schlosser 1998 sentences vs. unknown language 17 Scott 2000 sentences vs. rotated sentences 18 Thivard 2000 frequency transition vs. stationary tone 19 Indefrey & Cutler, 2004
Talairach & Tournoux (1988) Lateral and medial view of reference brain
Silent control
Silent control
Silent control
Silent control
Silent control
Silent control
Silent control
Silent control
Silent control
Silent control
Summary Listening to speech without an additional task induces extensive bilateral temporal activation but no reliable activation of Broca’s area.
Summary With increasing linguistic complexity of stimuli, the distance of activation maxima from the primary auditory cortex increases; particularly in the left hemisphere. It seems to be the highest linguistic processing level that leads to the most significant activation difference compared to a silent control.
Summary The left hemisphere shows a clearer stimulus-specific differentiation of activation maxima. Areas that seem to be especially related to (post-) lexical and sentence level processing can be identified.
Summary bilateral posterior STG: phonology left posterior STS: lexical phonology left anterior STS: possibly lexical and sentential prosody, possibly lexical and sentential meaning
Hagoort & Indefrey, in press
Neuroimaging studies on sentence processing Hagoort & Indefrey, in press
Haller, Klarhöfer, Radue, Schwarzbach, & Indefrey (2007) Eur.
Stimuli
Haller, Klarhöfer, Radue, Schwarzbach, & Indefrey (2007) Eur.
Bookheimer (2002), Fi
Haller, Klarhöfer, Radue, Schwarzbach, & Indefrey (2007) Eur. J. Neuroscience
wegstossen-Animation(1)
wegstossen-Animation(2)
Condition 1: Sentences Der rote Kreis stößt die grüne Ellipse weg. (The red circle pushes the green ellipse away. ) Condition 2: Noun phrases roter Kreis, grüne Ellipse, wegstoßen (red circle, green ellipse, push away) Condition 3: Single words Kreis, rot, Ellipse, grün, wegstoßen (circle, red, ellipse, green, push away) All conditions at slow (6/min) and fast (8/min) rate.
Sentences vs. Single Words Activation maximum at -54, 6, 10 Activation maximum at -60, 14, 12 Indefrey et al. (2001) PNAS Indefrey et al. (2004) Brain & Language
S and NP production vs. control (W) Indefrey, Hellwig, Herzog, Seitz & Hagoort (2004) Brain & Language
Conclusions (1) The left posterior IFG and the left posterior temporal lobe subserve syntactic comprehension. l Neural activation in syntactic comprehension depends on the need for syntactic analysis. l The two areas do not subserve the same function, because the temporal area does not seem to respond to syntactic errors and is not found in syntactic production. l
Aufgabe vom 14. 5. 10 Finden Sie eine neue Studie (ab 2006) in der mit FMRI, PET, oder NIRS entweder Wortproduktion oder Wortverstehen oder Satzverstehen untersucht wurde. l Vergleichen Sie die Ergebnisse mit der entsprechenden Meta-analyse. l Wodurch könnten Unterschiede zustande gekommen sein? l 73
ae79eea5181c76dfa8f6e0304345d97b.ppt