Скачать презентацию An Interactive Modeling Simulation Animation and Real-Time Control Скачать презентацию An Interactive Modeling Simulation Animation and Real-Time Control

98fbb1b2d586e5d7e89893d6d2936c44.ppt

  • Количество слайдов: 32

An Interactive Modeling, Simulation, Animation, and Real-Time Control (Mo. SART) Twin-Lift Helicopter System Environment An Interactive Modeling, Simulation, Animation, and Real-Time Control (Mo. SART) Twin-Lift Helicopter System Environment Chen-I Lim Richard P. Metzger, Jr. Armando A. Rodriguez American Control Conference June 3 rd 1999 Hyatt Regency, San Diego, CA Ack : White House , NSF, WAESO/CIMD, Boeing, Intel, Microsoft, CADSI, Knowledge Revolution, Math. Works, Lego, Xilinx, Honeywell, National Instruments, Integrated Systems, ASU CIEE. http: //www. eas. asu. edu/~aar/research/mosart/Presentations

New Technologies • Affordable High Performance Computing • Hi-fidelity Simulation Capability – Simulink / New Technologies • Affordable High Performance Computing • Hi-fidelity Simulation Capability – Simulink / MATLAB, etc… – Visual C++ • PC Animation Creation / Manipulation Technologies – 3 D Modeling Software (e. g. 3 D Studio, RPM D 3 D toolbox, etc. ) – Microsoft Direct. X (provides: 3 D-animation, sound, video, user-input, etc. ) • Object Oriented Programming (OOP) Framework – Active. X / OLE

Key Environment Features • Accelerated-time simulation • Alter model/controller: – structure – parameters (on-the-fly) Key Environment Features • Accelerated-time simulation • Alter model/controller: – structure – parameters (on-the-fly) • Advanced visualization: – real-time graphics – visual indicators/aids – 3 D animation models • Direct user input via joystick, mouse, etc. • Integration with MATLAB and Simulink

Contributions of Work System-specific interactive Mo. SART environments High performance: Windows/ C++ Advanced visualization Contributions of Work System-specific interactive Mo. SART environments High performance: Windows/ C++ Advanced visualization tools: Direct-3 D Extensible: integration with MATLAB User friendly

Sikorsky UH-60 Blackhawk Aerodynamic Derivatives Near Hover Sikorsky UH-60 Blackhawk Aerodynamic Derivatives Near Hover

Longitudinal Dynamics Near Hover State Space Representation: . . . x 0 = 1 Longitudinal Dynamics Near Hover State Space Representation: . . . x 0 = 1 0 0 Mq Mu -g 0 Xu x . . 0 + MBlc x. Blc - Cyclic control Open loop poles: Horizontal damping mode / Blc Unstable: backflapping mode. X/ Blc …need AFCS to minimize pilot workload

General System Diagram General System Diagram

Horizontal Speed Controller Desired speed + - k (s+a) s Cyclic control, Blc Horizontal Horizontal Speed Controller Desired speed + - k (s+a) s Cyclic control, Blc Horizontal Speed Dynamics . Speed, x (s+b)2 (2500) ( s + 50 )2 b 2 a = 2. 5 b = 0. 6 k = 0. 5 e-3

About the Program MATLAB Engine Direct-3 D v 3. 0 v 5. 0 Visual About the Program MATLAB Engine Direct-3 D v 3. 0 v 5. 0 Visual C++/ MFC Windows ’ 95/’ 98/NT Pentium PC System Requirements: Pentium PC running Windows 95/NT. 32 MB RAM. Direct-3 D 3. 0. Recommended: Pentium II 266 w/ MMX running Windows NT 4. 0. 64 MB RAM. Direct-3 D 3. 0.

Interactive Mo. SART Environment Modules Interactive Environment Application Program User Interface (PUI) Simulation Module Interactive Mo. SART Environment Modules Interactive Environment Application Program User Interface (PUI) Simulation Module (SIM) Graphical Animation Module (GAM) Help/Instruct Module (HIM) Communication Module (COM) Physical System Simulink MATLAB Other Applications Active. X Internet

Program User Interface UI) (P User Friendly Windows ’ 95/NT Interface • Menus • Program User Interface UI) (P User Friendly Windows ’ 95/NT Interface • Menus • Multiple windows • Program control toolbars Interactive System Diagram • Block diagram representation of system • Point-and-click access

Program interface Program interface

Simulation Module (SIM) Numerical Simulation • Fast compiled C++: >3000 Hz / 266 MHz Simulation Module (SIM) Numerical Simulation • Fast compiled C++: >3000 Hz / 266 MHz PII • Better than real-time simulation On-the-Fly Parameter Editing • Plant models • Controller parameters • Reference Commands, Disturbances, Noise, etc. • Integration methods: Euler, Runge-Kutta 4, etc. Extensibility

Simulation Module: Extensibility Changing plant parameters on-the-fly ) dit Mode (E Playback of externally Simulation Module: Extensibility Changing plant parameters on-the-fly ) dit Mode (E Playback of externally generated simulation: e. g. MATLAB/SIMULINK ) ack Mode (Playb Dynamic linking: MATLAB Engine. . . (E e) Link Mod xternal-

Graphical Animation Module M) (GA 3 D Animation • Direct-3 D • Texture-mapped, light-shaded Graphical Animation Module M) (GA 3 D Animation • Direct-3 D • Texture-mapped, light-shaded polygons • Wireframe copters from previous simulations (SMAC) Visualization Tools & Indicators • Real-Time Variable Display Window • 2 D Animation Window: pitch indicator • Real-time multiple-graph plotting Extensibility

Animation Module: Extensibility Direct-3 D standard file format 3 D modeling packages: e. g. Animation Module: Extensibility Direct-3 D standard file format 3 D modeling packages: e. g. 3 D Studio Libraries of 3 D objects widely available: Internet & commercial vendors.

Help-Instruct Module On-line Help • Instructions on using the environment • Program reference HTML Help-Instruct Module On-line Help • Instructions on using the environment • Program reference HTML / PDF Documents • Model documentation/ references • Interactive tutorials IM) (H

Utility of Environment Open-loop joystick control Closed-loop user joystick control TLHS: Modal Analysis TLHS: Utility of Environment Open-loop joystick control Closed-loop user joystick control TLHS: Modal Analysis TLHS: Command Following

Open-Loop Joystick Control Undesirable level of pitching. Very difficult to maintain a desired pitch Open-Loop Joystick Control Undesirable level of pitching. Very difficult to maintain a desired pitch attitude Very oscillatory cyclic control Difficult to maintain a desired speed

Closed-Loop Command Following Acceptable levels of pitching Smooth cyclic control response Good acceleration and Closed-Loop Command Following Acceptable levels of pitching Smooth cyclic control response Good acceleration and smooth speed transient

TLHS System Configuration Master Slave Spreader Bar Payload TLHS System Configuration Master Slave Spreader Bar Payload

TLHS System Poles TLHS open-loop poles 3 AVM SM ASM 2 Vertical Spring Horizontal TLHS System Poles TLHS open-loop poles 3 AVM SM ASM 2 Vertical Spring Horizontal Spring Backflapping Imaginary Axis 1 Symmetric Damping 0 Average Vertical Damping -1 Tethered Helicopter Anti-Symmetric Damping -2 Pendular -3 -2. 5 -2 -1. 5 -1 -0. 5 Real Axis 0 0. 5 1

TLHS: Modal Analysis TLHS: Modal Analysis

TLHS: Command Following Command: 5 ft/sec forward speed 5 ft/sec climb TLHS: Command Following Command: 5 ft/sec forward speed 5 ft/sec climb

TLHS: Command Following TLHS: Command Following

Future Directions • More visual indicators • Advanced SIM and GAM (e. g. TLHS) Future Directions • More visual indicators • Advanced SIM and GAM (e. g. TLHS) • Expanded HIM: web support, multimedia – Develop Model Documentation Feature • Enhanced integration with MATLAB / SIMULINK / • • LABVIEW / Excel…. all are Active. X Compatible Integrated design & analysis environment Develop Additional Environments … development of Facility VISIT: http: //www. eas. asu. edu/~aar/research/mosart/Presentations/

END OF PRESENTATION Some auxilary slides follow END OF PRESENTATION Some auxilary slides follow

Horizontal Speed Controller #1 (proportional only) Controller #2 (Dynamical Feedback) Horizontal Speed Controller #1 (proportional only) Controller #2 (Dynamical Feedback)

Unstable Backflapping Mode Unstable Backflapping Mode

TLHS: Loop Transfer Function TLHS: Loop Transfer Function

TLHS: Sensitivity TLHS: Sensitivity

TLHS: Complementary Sensitivity TLHS: Complementary Sensitivity