
bc250b39fc6b778c23ef997aaa2eec0a.ppt
- Количество слайдов: 116
ALCT Technical Status Martin von der Mey University of California Los Angeles • • ALCT 2001 status Test stand TMB-ALCT-CFEB test Conclusion Martin von der Mey, Emu Meeting in Florida, April 2002 1
ALCT 2001 Boards Power, computer connectors 80 MHz SCSI outputs (to Trigger Motherboard) Xilinx mezzanine card Main board for 384 ch type Delay/ buffer ASICs, 2: 1 bus multiplexors (other side) Input signal connectors Analog section: test pulse generator, AFEB power, ADCs, DACs (other side) Martin von der Mey, Emu Meeting in Florida, April 2002 2
ALCT Functions 1. Inputs discriminated signals from AFEB frontend boards, provides AFEB support: • Distributes power, shut-down, test pulse signals. • Sets and reads back discriminator thresholds. • Monitors board currents, voltages, and temperature. 2. Delay/translator ASIC on input does time alignment with bunch crossings. 3. Searches for muon patterns in anode signals. If found, sends information to trigger motherboard. 4. Records input and output signals at 40 MHz in case of level 1 trigger. Martin von der Mey, Emu Meeting in Florida, April 2002 3
Test stand Martin von der Mey, Emu Meeting in Florida, April 2002 4
Testing Delay ASICs Martin von der Mey, Emu Meeting in Florida, April 2002 5
ALCT Test Program Martin von der Mey, Emu Meeting in Florida, April 2002 6
ALCT Test Program Martin von der Mey, Emu Meeting in Florida, April 2002 7
ALCT Test Program Martin von der Mey, Emu Meeting in Florida, April 2002 8
ALCT-TMB Testing ü Standalone bench tests ü Radiation tests ü Cosmic ray tests ü ALCT-TMB test Martin von der Mey, Emu Meeting in Florida, April 2002 9
TMB-ALCT-CFEB Test Martin von der Mey, Emu Meeting in Florida, April 2002 10
LVDB-ALCT-CFEB Martin von der Mey, Emu Meeting in Florida, April 2002 11
Trigger Motherboard • TMB 2001 prototypes for use at FAST sites and for system tests • Produces cathode patterns from comparator outputs • Correlates cathode and anode (from ALCT) patterns • Sends chamber-level trigger decision to MPC • Raw hits data “spooled” to DMB • Interfaces to “everything” • • CFEBs DMB CCB ALCT MPC VME RPC (later) JTAG CFEBs ALCT (Future: will be via transition module) Martin von der Mey, Emu Meeting in Florida, April 2002 RPC via transition module 12
SP 2002 (Main Board) 12 Used in CMS System Receiver: Optical Transceivers Florida VME/ CCB FPGA • 16 x 1. 6 Gbit/s Links TLK 2501 Transceiver Data conversion: Phi Global LUT To/from custom GTLP backplane Eta Global LUT Phi Local LUT Front FPGA Martin von der Mey, Emu Meeting in Florida, April 2002 Merged 3 SR 2000 s 13
CSC Muon Trigger EMU part: on-chamber nearing end of production, Tri. DAS part: Second Scheme peripheral crate production > ESR in Nov. ‘ 03 generation prototypes Muon Portcard (1) Trigger Motherboard (9) Clock Control Board Trigger Timing & Control Optical link DAQ Motherboard (9) DT D TD TD T CMT DT D M M M C P M MM M M C BB BB B B CB BB B O N T R O L L E R 1 of 5 Muon Sorter (1) 1 of 5 Sector Processor (12) CFEB CFEB CSC Track-Finder Crate (1) In underground counting room 3 -D Track-Finding and Measurement Peripheral Crate on iron disk (1 of 60) Cathode Front-end Board 1 of 2 LVDB ALCT 1 of 24 Anode LCT Board On detector Trigger Primitives Martin von der Mey, Emu Meeting in Florida, April 2002 CSC Anode Front-end Board 14
On-chamber CSC Trigger Electronics Comparator ASICs – DONE. • Compare pulse heights from adjacent strips to find position of muon to ½-strip • 15000 16 -channel ASICS on CFEB boards (OSU) ALCT Boards – nearly DONE. • Finds tracks among anode hits, stores data for readout • 468+spares boards of 3 types (288 -, 384 -, 672 channel) Martin von der Mey, Emu Meeting in Florida, April 2002 15
CSC Peripheral Crates in UXC 55 Crate Controller D T D T D T CM T D T D C MMMMM C PMMM MMMMM O B BB B B B C B B B B N T R O L L E R DAQ Motherboard (DMB) TRIG Motherboard (TMB) Muon Port Card (MPC) Clock Control Board (CCB) Martin von der Mey, Emu Meeting in Florida, April 2002 16
Clock and Control Board Common design for both Peripheral and Track. Finder crates 20 Boards exist Have been. TTCrx distributed and used for chamber Mezzanine card with PLD testing Mezzanine Card 60+1 required for CMS operation Rice ECL inputs ECL outputs 9 U * 400 MM BOARD Martin von der Mey, Emu Meeting in Florida, April 2002 17
Muon Port Card Sorts up to 18 LCTs from 9 chambers and transmits best 3 to Track-Finder crate 6 Boards of second generation have been fabricated and assembled. Board has passed standalone tests, communication tests with TMB, and cosmic ray tests Successfully read data from 2 chambers and sorted correctly Tests with Track-Finder are continuing Optomodules Tests in time-structured test Gbit/s) (1. 6 beam are underway now (for second time in Florida, year) Martin von der Mey, Emu Meeting this April 2002 Rice TLK 2501 serializers Mezzanine card (same as TMB design) 18
1 st Prototype Track-Finder Muon Port Card Clock Control Sector Processor Sector Receiver. Tests (UCLA) Board (Rice) (Florida) SBS VME Interface Custom Channel. Link Backplane (Florida) Results included in Trigger TDR (2000) Martin von der Mey, Emu Meeting in Florida, April 2002 Very successful, but overall CSC latency was too long New 2002 design improves latency, reduces # of crates from 6 to 1 19
Muon Sorter SR SR SR / / / SP SP SP MS CCB Clock and Control Board SBS 620 Controller CSC Track-Finder Crate Second generation prototypes SR SR SR / / / SP SP SP Sector Receiver/ Processor From MPC (chamber 4) From MPC (chamber 3) From MPC (chamber 2) From MPC (chamber 1 B) From MPC (chamber 1 A) To DAQ Single Track-Finder Crate Design with 1. 6 Gbit/s optical links Custom 6 U GTLP backplane for interconnections Martin von der Mey, Emu Meeting in Florida, April 2002 20
SP 2002 (Main Board) 12 Used in CMS System Receiver: Optical Transceivers Florida VME/ CCB FPGA • 16 x 1. 6 Gbit/s Links TLK 2501 Transceiver Data conversion: Phi Global LUT To/from custom GTLP backplane Eta Global LUT Phi Local LUT Front FPGA Martin von der Mey, Emu Meeting in Florida, April 2002 Merged 3 SR 2000 s 21
2003 Time-structured Beam Test Setup X 5 A Setup Trigger primitives TTC crate DAQ Data Peripheral Crate 2 DMB, 2 TMB 1 CCB, 1 MPC Track finder Crate TRIDAS FED crate 1 DDU PC beam S 1 S 3 S 2 CSC 1 CSC 2 Martin von der Mey, Emu Meeting in Florida, April 2002 22
Typical Muon Event Raw data includes 8 or 16 time bins history Martin von der Mey, Emu Meeting in Florida, April 2002 23
2003 Time-Structured Test Beam timing found Optimal 48 bunches 25 ns bunch spacing bunch width 3 -5 ns 1. 2 ms High efficiency (~98 -99%) achieved Peripheral crate system basically working as desired Small CLCT efficiency loss at high rates, almost no ALCT efficiency loss 23 ms SPS orbit period Structure repeats during 2. 6 s spill length Martin von der Mey, Emu Meeting in Florida, April 2002 Scintillation Counters 48 bunches ALCT 24
CLCT Positions Key CLCT half strip from chamber 2 vs. 1: • On fine scale “staircase” structure indicates good trigger position resolution • (note that chamber 1 is vertically higher, thus the offset in position) Martin von der Mey, Emu Meeting in Florida, April 2002 25
CSC Trigger High Rate Tests Chamber #1 CLCT Rate (KHz) 2, 000 1, 500 1, 000 data consistent with dead-time = 225 ns 500 0 0 500 1, 000 1, 500 2, 000 2, 500 3, 000 Beam Intensity (KHz) Expected LCT rate at LHC < 25 KHz (ME 1/1) Martin von der Mey, Emu Meeting in Florida, April 2002 26
CSC Track Finder Test Sector Processor 2 CSCs • Successfully passed optical link loopback tests and MPC SP chain tests using 40 MHz crystal oscillator to drive system • MPC SP optical link tests failed at the structured beam tests in May 2003 (link errors every few ms) • Clock was derived from TTC system (mi vi vx rx) • Combined clock jitter presumably too large to drive optical links • PLL was not used to clean clock (i. e. QPLL was not available) Martin von der Mey, Emu Meeting in Florida, April 2002 27
2003 Unstructured Test Very high efficiencies achieved Beam Results • Highest trigger efficiency of 99. 9% required low rate (few k. Hz) Improved DAQ throughput allowed readout up to 80 k full events per spill. Typical “run” is 1 or 2 spills. Improved scans taken: • • • Logic scope read out on most data HV scan Comparator threshold scan Pattern requirements scan Angle scans Martin von der Mey, Emu Meeting in Florida, April 2002 28
ALCT Production ~510 Boards, ~200000 Channels Testing - Example Semi-automated procedures Using 3 test stations • 2 for testing • 1 for fixing Crew of up to 14 students testing (3 FTE) Sign-off sheets to track testing failures Test before and after 2 -day burn-in 2 students trained for fixing 1 engineer for difficult cases 1 postdoc supervises it all Martin von der Mey, Emu Meeting in Florida, April 2002 29
Preparation for Sept. 2003 Beam Test Scintillator Panels HV Supply CSCs Periph Crate MPC Cosmic ray test stand in Florida System brought to working order (everything now shipped to CERN) TTCvx CCB TTCvi TF Crate SP Dynatem TMB DDU DMB Martin von der Mey, Emu Meeting in Florida, April 2002 CCB SBS 30
CSC Muon Trigger EMU part: on-chamber nearing end of production, Tri. DAS part: Second Scheme peripheral crate production > ESR in Nov. ‘ 03 generation prototypes Muon Portcard (1) Trigger Motherboard (9) Clock Control Board Trigger Timing & Control Optical link DAQ Motherboard (9) DT D TD TD T CMT DT D M M M C P M MM M M C BB BB B B CB BB B O N T R O L L E R 1 of 5 Muon Sorter (1) 1 of 5 Sector Processor (12) CFEB CFEB CSC Track-Finder Crate (1) In underground counting room 3 -D Track-Finding and Measurement Peripheral Crate on iron disk (1 of 60) Cathode Front-end Board 1 of 2 LVDB ALCT 1 of 24 Anode LCT Board On detector Trigger Primitives Martin von der Mey, Emu Meeting in Florida, April 2002 CSC Anode Front-end Board 31
On-chamber CSC Trigger Electronics Comparator ASICs – DONE. • Compare pulse heights from adjacent strips to find position of muon to ½-strip • 15000 16 -channel ASICS on CFEB boards (OSU) ALCT Boards – nearly DONE. • Finds tracks among anode hits, stores data for readout • 468+spares boards of 3 types (288 -, 384 -, 672 channel) Martin von der Mey, Emu Meeting in Florida, April 2002 32
Beam Test Setup TTC crate Trigger primitives DAQ Data Peripheral Crate 2 DMB, 2 TMB 1 CCB, 1 MPC Track finder Crate TRIDAS FED crate 1 DDU PC beam S 1 S 3 S 2 CSC 1 Martin von der Mey, Emu Meeting in Florida, April 2002 CSC 2 33
Beam Test Setup / From front end cards CCB + TTCRx • 2 CSC’s, all on-chamber boards • Peripheral crate • Track Finder • CMS readout board • Up to 80 K events read out in 2. 6 s spill Martin von der Mey, Emu Meeting in Florida, April 2002 MPC 2 TMBs and DMBs 34
2003 Synchronous Beam Structure 48 bunches 25 ns bunch spacing bunch width 3 -5 ns 1. 2 ms 23 ms SPS orbit period Structure repeats during 2. 6 s spill length Martin von der Mey, Emu Meeting in Florida, April 2002 35
Bunch Structure, ALCT Delay Tuning Expect muons in 48 out of 924 bx verified by CLCT bxn from data BX efficiency vs. ALCT delay setting 0 -31 ns Chamber 1 Martin von der Mey, Emu Meeting in Florida, April 2002 Chamber 2 36
Note logarithmic scale BX Distributions With Optimal Anode Delays Cathodes: • Data mostly in 3 bx (no fine timeadjustment possible) Anodes: • Data 98. 7% in 1 bx (after fine timeadjustment) Chamber 1 Martin von der Mey, Emu Meeting in Florida, April 2002 Chamber 2 37
TMB 2003 A and RAT 2003 A 4 boards produced and bench-tested Replaces problematic PHOS 4 fine delays with commercial DDD devices Faster and larger FPGA (Xilinx Virtex-2 XC 2 V 3000) on mezzanine board ALCT and RPC inputs through RAT (Rpc Alct Transition) board Rad-hard regulators used, 1. 5 v added for Virtex-2 core voltage Martin von der Mey, Emu Meeting in Florida, April 2002 38
TMB 2003 A Detail Martin von der Mey, Emu Meeting in Florida, April 2002 39
RAT 2003 A Detail To TMB and 3. 3 v, 1. 8 v power These Connectors for GND Only Spartan 2 E FPGA for RPC connectors ALCT SCSI input connectors Martin von der Mey, Emu Meeting in Florida, April 2002 40
TMB-ALCT Block Diagram TMB Master clock ALCT section CCB test pulse commands Latch input ALCT data Latch output ALCT commands ALCT 2 ns/bin -RX clock 2. Adjust ALCTrx for optimal latching TMB output data at ALCT TMB passthrough ALCT commands ALCT Asynch. test pulse from VME write to CCB Synch. test pulse from TTC command or VME write to CCB CSC Test Pulse Strips Crate Master clock 3. Adjust Delay ASICs for max. Internal test pulse via VME command to TMB probability for ALCTs to come in one BX Delay ASICs ~2. 2 ns/bin Main FPGA OR Test pulse to AFEB amplifier or test strips (select via VME write to TMB to ALCT Slow Control FPGA register) AFEB Martin von der Mey, Emu Meeting in Florida, April 2002 1. Adjust ALCTtx for optimal latching of ALCT output data at TMB ALCT -TX clock 2 ns/bin ALCT data ALCT Main FPGA ALCT Master clock ALCT latch raw data AFEB data 41
RPCs in Test Beam • 1 RE 1/2 (call it RE 1) • 2 free-standing (call them RE 2, RE 3) • Readout info for experts only: • RPC 0 RE 1 • RPC 3 RE 2 • RPC 2 RE 3 RE 2, RE 1 RE 3 on behin ME 3/2 ME 2/2 ME 1/2 ME 1/1 d m- Martin von der Mey, Emu Meeting in Florida, April 2002 42
Link Board to RAT Board Setup • RAT receives 4 cables, one from each RPC chamber • Cables 0, 1, 2 were connected • Appears that phasing RAT-TMB incorrect, so that 0 2 and 1 3 in readout • N. B. RE 1 seems the healthiest chamber Martin von der Mey, Emu Meeting in Florida, April 2002 43
TMB Bunch Crossings Data • Flat Distribution seen 0 -15 (4 bits): • N. B. no ALCT or TMB data transmission errors (CRC check) seen in these runs Martin von der Mey, Emu Meeting in Florida, April 2002 44
Internal RPC BXN diff • BXN difference for consecutive RPC data arriving at TMB • Always incrementing by 1. Martin von der Mey, Emu Meeting in Florida, April 2002 45
No CRC errors for TMB/ALCT CRC TMB CRC Martin von der Mey, Emu Meeting in Florida, April 2002 46
RPC Bunch Crossings Data • TMB vs RPC see perfect agreement with expectations. • At least, ALCT/CLCT bx reset/bx 0 protocol = Link board protocol Martin von der Mey, Emu Meeting in Florida, April 2002 47
RPC BX from different RPC Chambers? • Nice diagonals, but offsets (2, 7 bx) due either to TTCrx offset or reset timing at Link board Martin von der Mey, Emu Meeting in Florida, April 2002 48
Test clock sent to TMB Inverted RPC clock sent to TMB (Runs=553, 554) Martin von der Mey, Emu Meeting in Florida, April 2002 49
Reset with SPS Orbit • Better agreement (run=563) • Still issues to understand Martin von der Mey, Emu Meeting in Florida, April 2002 50
Beam Spot Size Key ½-Strip • Data triggered by SP covers roughly 30 x 30 cm • (Scintillators are 10 x 10 cm) Key Wire Group Key ½-Strip Martin von der Mey, Emu Meeting in Florida, April 2002 51
RPC configuration Run 562 (Wires 0 -11) Run 548 (Wires 9 -20) Martin von der Mey, Emu Meeting in Florida, April 2002 52
RE 1 Pad Data Quality Key ½-Strip • Compare ME 3/2 (rear chamber) CLCT key half-strips (not strips) to RE 1 pad (vertical dimension) • Good position agreement (one dead pad) • Modest RPC efficiency within readout region • Fiducial region for RE 1 select half-strips 65 -100 RPC Pad Martin von der Mey, Emu Meeting in Florida, April 2002 53
RE 1 Efficiency Within Fiducial Region • Unsure exactly where pads are, so plot efficiency versus CSC wire group • This RPC chamber fairly efficient Key Wire Group Martin von der Mey, Emu Meeting in Florida, April 2002 54
RE 2 Pad Data Quality Key ½-Strip • Same comparison • Active part of chamber appears far from beam center low statistics • Fiducial region: select half-strips 10 -50 RPC Pad Martin von der Mey, Emu Meeting in Florida, April 2002 55
RE 2 Efficiency Within Fiducial Region • This RPC chamber not so efficient Key Wire Group Martin von der Mey, Emu Meeting in Florida, April 2002 56
Key ½-Strip RE 3 Pad Data Quality • Same comparisons • Fiducial region: select half-strips 80 -115 RPC Pad Martin von der Mey, Emu Meeting in Florida, April 2002 57
RE 3 Efficiency Within Fiducial Region • RE 3 efficiency reaches a high value, but is not flat with wire number Key Wire Group Martin von der Mey, Emu Meeting in Florida, April 2002 58
RPC timing versus TMB RE 2 RE 1 Martin von der Mey, Emu Meeting in Florida, April 2002 RE 3 59
• • RPC versus ALCT First RPC hit per chamber: RE 1, RE 2 all in one BX RE 3 not as good Note RE 1 later by 1 BX Timing RE 3 RE 1 RE 2 Martin von der Mey, Emu Meeting in Florida, April 2002 60
RPC Afterpulsing? • Number of time bins per chamber per event • RE 1 and RE 2 good, RE 3 shows considerable after-pulsing: RE 2 RE 1 Martin von der Mey, Emu Meeting in Florida, April 2002 RE 3 61
TMB-DMB Block Diagram TTC/CCB Crate Master Clock, L 1 A • (external L 1 A = LHC & Test Beam operation modes) DMB TMB Master Clock, L 1 A CLCT LCT-L 1 A Coinc. starts TMB readout LCTs to MPC RPC delay RPC logic From RPC/ RAT CLCT Readout queue From ALCT readout queue ALCT/ CLCT/ RPC Coincidence From ALCT AFF (Active FEB Flags) CLCT Final logic Martin von der Mey, Emu Meeting in Florida, April 2002 ALCT DAV delay DMB-DDU readout Controller logic L 1 A*ALCT DAV Coinc. ALCT FIFO L 1 A CFEBs “hit” Cable Equal. delay AFF delay fixed CLCT pre-trigger logic DAV delay CLCT FIFO ALCT-DAV LCT -read delay ALCT delay CLCT-DAV DMB Master Clock, L 1 A*CLCT DAV Coinc. Comparators CFEB DAV Coinc. L 1 A delay Auto set CFEB FIFOs (5) AFF-L 1 A Coinc. Starts CFEB digi. & readout Store SCA data command CFEB DAV delay CFEB Clock phase 1 ns/bin CFEB -DAV Output FPGA SCAs, ADCs, Memories CFEB Clock CFEB 62
ALCT 384 Boards Power, computer connectors 80 MHz SCSI outputs (to Trigger Motherboard) Motherboard 24 Input signal connectors Xilinx Mezz. board Delay/ buffer ASICs, 2: 1 bus multiplexors (other side) Spartan XL Martin von der Mey, Emu Meeting in Florida, April 2002 Analog section: test pulse generator, AFEB power, ADCs, DACs (other side) 63
ALCT Production Martin von der Mey, Emu Meeting in Florida, April 2002 64
ALCT Production Testing üDone. üAll ALCT base boards repaired. Also spares. üPrepare mezz. Cards spares Martin von der Mey, Emu Meeting in Florida, April 2002 65
RAT 2003 Layout VME Backplane To TMB Spartan FPGA RPC connectors ALCT Input connector Martin von der Mey, Emu Meeting in Florida, April 2002 66
Trigger Motherboard (TMB) Main FPGA (on back) XILINX XCV 1000 E Input connectors From 5 CFEB’s Mezzanine board Input connectors From ALCT üGenerates Cathode LCT trigger with input from CFEB (comparator) üMatches ALCT and CLCT; sends trigger primitive info via MPC to Lev -1 muon trigger, sends anode and cathode hits to DMB. Martin von der Mey, Emu Meeting in Florida, April 2002 67
New TMB 2003 A • New TMB 2003 A under test Martin von der Mey, Emu Meeting in Florida, April 2002 68
Beam Test of TMB 2001 ØSee Jay’s talk Martin von der Mey, Emu Meeting in Florida, April 2002 69
Old ALCT radiation results Xilinx vs Altera • Radiation results shows small improvements to before… • Mean lies at 65. 24 Rad compared to 59. 2 Rad before… • The main improvement (factor 5) comes due to combination of 5 chips • (1 concentrator and 4 LCT chips into 1). Martin von der Mey, Emu Meeting in Florida, April 2002 70
Radiation Test results • Irradiated XC 2 V 4000 Xilinx FPGA • New radiation test gives 141 Rad for proton beam. Compared to 65 Rad before. (~2. 5 better) • SEU proton fluence 79. 8*10 7 cm-2 (M. Huhtinen (1 -4)*10 10 cm-2 for 10 LHC years) • Also tested 6 GTLP chips up to 5 k. Rads no problems. Martin von der Mey, Emu Meeting in Florida, April 2002 71
Adjust Shower Profile Redistribute energies inside cluster 9 strips in one cluster Before After 1 2 3 4 Martin von der Mey, Emu Meeting in Florida, April 2002 5 6 7 8 9 72
Ratio Ene 3/Ene 5 for 1 d cluster Martin von der Mey, Emu Meeting in Florida, April 2002 73
Ratio Ene 2/Ene 5 for 1 d cluster Martin von der Mey, Emu Meeting in Florida, April 2002 74
Ratio Ene 1/Ene 5 for 1 d cluster Martin von der Mey, Emu Meeting in Florida, April 2002 75
Energy in U layer divided by 2 d energy Martin von der Mey, Emu Meeting in Florida, April 2002 76
1 d cluster width for layer 1 Martin von der Mey, Emu Meeting in Florida, April 2002 77
Energy in V layer divided by 2 d energy Martin von der Mey, Emu Meeting in Florida, April 2002 78
1 d cluster width for layer 0 Martin von der Mey, Emu Meeting in Florida, April 2002 79
Ratio 5/9 for layer 0 Martin von der Mey, Emu Meeting in Florida, April 2002 80
Ratio 5/9 for layer 1 Martin von der Mey, Emu Meeting in Florida, April 2002 81
Martin von der Mey, Emu Meeting in Florida, April 2002 82
Martin von der Mey, Emu Meeting in Florida, April 2002 83
Martin von der Mey, Emu Meeting in Florida, April 2002 84
(E 2+E 8)/E 5 Martin von der Mey, Emu Meeting in Florida, April 2002 85
(E 3+E 7)/E 5 (E 4+E 6)/E 5 Martin von der Mey, Emu Meeting in Florida, April 2002 86
(E 1+E 9)/E 5 Martin von der Mey, Emu Meeting in Florida, April 2002 87
Martin von der Mey, Emu Meeting in Florida, April 2002 88
Martin von der Mey, Emu Meeting in Florida, April 2002 89
Martin von der Mey, Emu Meeting in Florida, April 2002 90
Martin von der Mey, Emu Meeting in Florida, April 2002 91
Martin von der Mey, Emu Meeting in Florida, April 2002 92
Martin von der Mey, Emu Meeting in Florida, April 2002 93
Martin von der Mey, Emu Meeting in Florida, April 2002 94
Martin von der Mey, Emu Meeting in Florida, April 2002 95
Martin von der Mey, Emu Meeting in Florida, April 2002 96
Martin von der Mey, Emu Meeting in Florida, April 2002 97
Martin von der Mey, Emu Meeting in Florida, April 2002 98
Martin von der Mey, Emu Meeting in Florida, April 2002 99
Angle between electrons Martin von der Mey, Emu Meeting in Florida, April 2002 100
Cos(q*) = Martin von der Mey, Emu Meeting in Florida, April 2002 101
MZ h Martin von der Mey, Emu Meeting in Florida, April 2002 102
MZ momentum Martin von der Mey, Emu Meeting in Florida, April 2002 103
Z Mass Martin von der Mey, Emu Meeting in Florida, April 2002 104
Z transverse momentum Martin von der Mey, Emu Meeting in Florida, April 2002 105
Results Selected data events: total: 13609 +- 117 c-c : 5172 +- 72 c-p : 8437 +- 91 Cross section: total: 253. 0 +- 2. 2 pb c-c : 263. 8 +- 3. 7 pb (260. 9+-18. 2 pb) c-p : 246. 7 +- 2. 7 pb (248. 4+- 5. 1 pb) Martin von der Mey, Emu Meeting in Florida, April 2002 106
CDF Offline Operations Status: • Rerun zee validation sample for 5. 1. 1. No discrepancies found as expected. • Checked farm crashes. Reproduced 3 crashes: Cdf. Track. cc (in prewrite). if (_si. Hits. size() > 0) { Cdf. Track. Hits* stored. Svx. Hits; stored. Svx. Hits = new Cdf. Track. Hits; for (Si. Hit. Iterator ihit = begin. SIHits(); ihit != end. SIHits(); ++ihit) { int packed = ((*ihit)->id() & 0 x 1 FFFFFFF) | (((*ihit)->get. Amb. Index() & 0 x 7 ) << 29); crash (ihit !=0 x 0) stored. Svx. Hits->accumulate(packed); } Matt and Chris Martin von der Mey, Emu Meeting in Florida, April 2002 107
Crashes The location in ELextended. ID is basic_string& operator=(const basic_string& str); basic_string& operator=(const char. T* s) {return assign( s, traits: : length(s) ); } crash basic_string& operator=(char. T c) {return assign( size_type(1), c ); } and in Error. Obj: : clear() is my. Serial = 0; my. Xid. clear(); my. Id. Overflow = ""; crash è Mark Fischler (needs help with debugging) • 0 x 8 fa 13 bd in Si. Strip. Corrector. Manager: : correct. Strip. Set (this=0 xcd 5 b 338, strip. Set=0 xe 392094) at /home/cdfsoft/dist/packages/Svx. Daq. Objects/V 00 -0074/src/Si. Strip. Corrector. Manager. cc: 62 ü Matt (fixed) Martin von der Mey, Emu Meeting in Florida, April 2002 108
Valgrind Run valgrind over the other crashes: ==18449== Conditional jump or move depends on uninitialised value(s) ==18449== at 0 x 420 A 6879: __mktime_internal (in /lib/i 686/libc-2. 2. 5. so) ==18449== by 0 x 420 A 6 EBE: timelocal (in /lib/i 686/libc-2. 2. 5. so) ==18449== by 0 x 9 B 0 D 0 C 1: Date. Util: : time_from_string(char const *) (/home/cdfsoft/dist/packages/DBObjects/V 00 -00 -72/src/Time. Stamp. cc: 264) ==18449== by 0 x 904 C 794: Chip. Status: : __ct(std: : basic_string
Valgrind Still there (1 X) (Aseet) ==6977== Conditional jump or move depends on uninitialised value(s) ==6977== at 0 x 914484 D: Pad. Sqz: : Huffman_T: : operator<<( (Pad. Sqz: : Bit. Stream_T &)) (/home/cdfsoft/dist/packages/PADSObjects/V 00 -00 -23/src/Huffman. cc: 368) ==6977== by 0 x 9145 E 4 C: Pad. Sqz: : Pad. Raw. Bank: : Fluff( (int)) (/home/cdfsoft/dist/packages/PADSObjects/V 00 -00 -23/src/Pad. Raw. Bank. cc: 173) ==6977== by 0 x 84 CF 42 C: Pad. Raw. Module
Nodes Check crash rate per node: Node 171 (Take out) Martin von der Mey, Emu Meeting in Florida, April 2002 111
Memory usage Martin von der Mey, Emu Meeting in Florida, April 2002 112
Memory usage per Run Large memory usage Martin von der Mey, Emu Meeting in Florida, April 2002 113
Memory increase Martin von der Mey, Emu Meeting in Florida, April 2002 114
Daily checking • New cron job checks in log files for sever errors: • Found yesterday: • %ERLOG-s : *Fluffed bank(s) != original(s) Pad. Raw. Banks • %ERLOG-s Cal. Data. Maker: • /home/cdfsoft/dist/packages/Calor/V 00 -01 -52/src/Cal. Data. Maker. cc : 754 • unpack HATD bank : more than 8 hits in PHA Global. Library. Logger • vxfit 0() 28 -Oct-2003 10: 26: 23 CST run = 163956 event = 262325 • %ERLOG-s Cal. Data. Maker: • /home/cdfsoft/dist/packages/Calor/V 00 -01 -52/src/Cal. Data. Maker. cc: 745 • unpack HATD bank : more than 8 hits in WHA Global. Library. Logger • chi 2 wrt. Vertex() 28 -Oct-2003 10: 07: 22 CST run = 163955 event =191711 Martin von der Mey, Emu Meeting in Florida, April 2002 115
fcdflnx 3 • Problems with disk space • Take more scratch space • Get a new disk Martin von der Mey, Emu Meeting in Florida, April 2002 116