Скачать презентацию A Novel Approach to the Detection and Treatment Скачать презентацию A Novel Approach to the Detection and Treatment

3384f43a3204bb231c267df2e3b58fb9.ppt

  • Количество слайдов: 1

A Novel Approach to the Detection and Treatment of Raynaud’s Phenomenon: Using Non-invasive Methods A Novel Approach to the Detection and Treatment of Raynaud’s Phenomenon: Using Non-invasive Methods 1 Welsh Danny Clegg 1, Andrew Heusch 2, Lee Mc. Carthy 2, Peter W Mc. Carthy 1 Institute of Chiropractic & Faculty of Advanced Technology, University of Glamorgan, Treforest, Pontypridd, CF 37 1 DL, UK 2 Tonus Europe Limited, Tredegar Business Park, Tredegar, NP 22 3 EL Experimental results Introduction Raynaud’s phenomenon, named after French Physician Maurice Raynaud, is a microcirculatory disorder, usually involving the hands and fingers. It is thought to affect 10 -20 % of the adult population, involving a higher number females 1. Typical symptoms include discolouration, numbness, tingling and pain, with more severe cases involving ulceration and necrosis; making Raynaud’s phenomenon a potentially debilitating condition. Symptoms usually manifest in response to cold, vibration or emotional triggers, thus experimental studies to date have typically incorporated cold provocation tests around 10 o. C 2, 3. Current studies show that there are potential genetic/secondary sites of endothelial damage responsible for symptom manifestation 4. Concurrent with this thinking, more recent and novel approaches to diagnosis have involved the use of angiography to map out the exact location of vascular destruction, providing platform for a higher degree of specificity when considering a new treatment approach 5. Insulated gloves are a common non-invasive approach to management of Raynaud’s, with a range of batterypowered heated gloves already available. However, the Raynaud’s and Scleroderma Association (UK) have suggested that many of these gloves have major design flaws such as: exposed wires, excessive mass and bulkiness 6. To the author’s knowledge, of all gloves marketed as being for sufferers of “Raynaud’s”, only “Thermoflow” Far Infra Red (FIR) gloves have research evidence (a Randomised Controlled Trial : RCT) to substantiate their claims 7. Aim To determine if the design of gloves targeting Raynaud’s sufferers can be improved. The following charts and images display the results of each experiment Heat pad testing: Heat pads elicited similar behaviours when tested using the calibrated sensors (sample frequency 1 k. Hz). Peak temperatures varied by 1 o. C between heat pads, and the highest peak temperature was 41. 9 o. C. The mean heat loss from peak temperature was -3. 8 o. C after 45 minutes, and the greatest individual heat loss was 5 o. C by pad 2. Materials (gloves) testing: The graph shows the mean temperature changes taken from 3 experiments. Peak temperatures varied by 3. 5 o. C. Each pad elicited a higher peak temperature when encased by a glove. The highest peak temperature was 45 o. C, elicited by glove 2 (mid-range windproof). The lowest mean heat loss from peak to 45 minutes was -2. 4 o. C, elicited by glove 1 (basic wool/lycra glove). Combined technologies prototype test: The IR image to the left shows a heat pad inside the FIR glove, and the image to the right shows a heat pad inside the prototype. Both images were taken after 20 minutes of activation. The prototype retained a greater amount of heat during this initial testing. Approach taken Research and source available materials with high heat-retentive properties. Research design of currently available materials and Raynaud’s gloves. Develop a scientifically valid methodology for studying heat retention properties of materials: incorporating infra-red camera, reusable heat pads and traceably calibrated heat sensors. Create and test prototypes incorporating new materials aimed at increasing heat-retention. Study description infra-red thermography: The images to the left show 2 volunteers with a history of Raynaud’s phenomenon. The images to the right show thermographs of normal hands. There was a greater DDD recorded in subjects with Raynaud’s phenomenon when compared to normal hands. The table below indicates the different experiments used to produce the methodology with the greatest degree of accuracy. Conclusion and further work Table 1: Experimental method description Experiment Method 1. Heat Pad Test Heat pads were activated and temperature changes recorded using different equipment hand held IR thermometer; temperature probe; IR camera; calibrated temperature sensors. IR camera and sensors were found to have greatest degree of accuracy. 2. Testing heat pads inside different materials 3 gloves were tested (basic wool/lycra; mid-range windproof; FIR ceramic impregnated). Heat pads were selected at random, activated, and encased inside each. IR images and sensor recordings were taken to record peak temperature reached, and heat loss over time. 3. Technologies Material was selected to be incorporated into a combined to create first prototype based on the previous tests. This prototypes for testing prototype is currently being tested using the same methodology as the other gloves. 4. Analysis of temperature differences in the hands of Raynaud’s sufferers using infra-red thermography Student and academic staff volunteers from the Chiropractic course had their hands assessed by taking an image of the dorsum of their hands in a room with a controlled temperature of 23 o. C. , following a 20 minute period to aclimatise. The distal-dorsal difference (DDD) was calculated from the nail bed to the dorsum of the hand 8. System description 1. Heat pad testing: Different heat pads elicit a different peak temperature and varying times to reach it, suggesting possible chemical impurities. The most effective method for recording temperature change was IR camera and calibrated temperature sensors. Hand-held IR and probe thermometers proved inconsistent. 2. Materials (gloves) testing: Heat pads retained heat for longer periods of time when encased in different materials. The most effective glove in terms of heat retention, was surprisingly the wool/lycra glove. This was the thickest of the materials, suggesting that the most influential factor for heat retention was material thickness, and not composition. 3. Combined technologies prototype test: This was only an initial test to gain a visual perspective, and the initial result was that the prototype was able to retain heat for a longer period of time. However this needs to be tested in the same way as the other materials, using calibrated sensors, and further conclusions made. 4. infra-red thermography of the hands: Volunteers with Raynaud’s phenomenon had a greater DDD than normal hands. , consistent with the current literature 8. This suggests that this imaging modality is a useful non-invasive approach when conducting further studies. The next step will be to continue testing the prototypes already created and continue sourcing materials which will further improve heat retention. Any subsequent study involving human participants will use IR thermography for assessment. Acknowledgements: Danny Clegg is on a KESS funded MRes programme Special thanks to Chiropractic students Stewart Bennett, Elizabeth James and Cinzia Monni for recording the IR images References [1] Silman, A. , Holligan, S. , Brennan, P. , Maddison P. (1990). Prevalence of Symptoms of Raynaud’s Phenomenon in General Practice. BMJ, 301: 590 -592 [2] Pelmear, P. L. , Roos, J. , Leong, D. , Wong, L. (1987). Cold Provocation Test Results from a 1985 Survey of Hard-rock Miners in Ontario. Scand J Work Environ Health, 13: 343 -347 [3] Thompson, A. , House, R. , Manno M. (2007). Assessment of the Hand-arm Vibration Syndrome: Thermometry, Plethysmography and the Stockholm Workshop Scale. Occupational Medicine, 57: 512 -517 [4] García-Carrasco M, , Jiménez-Hernández, M, , O. Escárcega, R, , Mendoza-Pinto, C, , Pardo-Santos, R. , Levy, R, , Galarza Maldonado, C. , Pérez Chávez, G. , , Cervera, R. (2008). Treatment of Raynaud’s Phenomenon. Autoimmunity Reviews, 8: 62 -68 [5] Kim, Y. H. , Siew-Weng, Ng. , Heung, S. S. and Hee, C. A. (2011). Classification of Raynaud’s Disease Based on Angiographic Findings. Journal of Plastic, Reconstructive and Aesthetic Surgery, xx: 1 -9 [6] Mawdsley, A. H. (2011). Letter detailing feedback on currently available gloves from the chief executive off the Raynaud’s and Scleroderma Association (UK), dated 23 rd February, 2011 [7] Ko, G. D. , Berbrayer, D. (2002). Effect of Ceramic-Impregnated “Thermoflow” Gloves on Patients with Raynaud’s Syndrome: Randomized, Placebo-Controlled Study. Alternative Medicine Review, 7(4): 328 -335 [8] Anderson, M. E. , Moore, T. L. , Lunt, M. And Herrick, A. L. (2006). The ‘Distal–Dorsal Difference’: a Thermographic Parameter by Which to Differentiate Between Primary and Secondary Raynaud’s Phenomenon. Rheumatology, 46: 533 -538