Скачать презентацию A Cs I Tl Dark Matter Search Experiment — Скачать презентацию A Cs I Tl Dark Matter Search Experiment —

860c94c8dd705c81cd021af12b3f11e6.ppt

  • Количество слайдов: 26

A Cs. I(Tl) Dark Matter Search Experiment - KIMS Korean Invisible Mass Search Yeongduk A Cs. I(Tl) Dark Matter Search Experiment - KIMS Korean Invisible Mass Search Yeongduk Kim Sejong University, Seoul, Korea IDM 2002 meeting, 2002. Sep 5

Collaborators Seoul National Univ. : J. M. Choi, R. K. Jain, S. C. Kim, Collaborators Seoul National Univ. : J. M. Choi, R. K. Jain, S. C. Kim, S. K. Kim*, T. Y. Kim, H. S. Lee, S. E. Lee, H. . Park, H. Y. Yang, M. S. Yang Sejong Univ. : W. K. Kang, J. I. Lee, D. S. Lim, Y. D. Kim, Yonsei Univ. : J. Hwang, H. J. Kim, Y. J. Kwon Iwha Womans Univ. : I. S. Han, E. K. Lee, I. H. Park Seong. Kyun. Kwan Univ. : I. Yu Chonbuk National Univ. : S. Y. Choi KAIST : P. Ko Univ. of Maryland : M. H. Lee, E. S. Seo National Taiwan Univ. , : H. B. Li, C. H. Tang, M. Z. Wang Academia Cinica : W. P. Lai, H. T. Wong Inst. Of High Energy Physics : J. Li, Y. Liu, Q. Yue Inst. Of Atomic Energy : B. Xin, Z. Y. Zhou Tsinghua University : J. Zhu * PI

Outline • • • Cs. I(Tl) crystals Underground site Studies on background reduction Perspectives Outline • • • Cs. I(Tl) crystals Underground site Studies on background reduction Perspectives Summary

Why Cs. I(Tl) Crystal ? Advantage High light yield ~50, 000/Me. V Pulse shape Why Cs. I(Tl) Crystal ? Advantage High light yield ~50, 000/Me. V Pulse shape discrimination Easy fabrication and handling High mass number(both Cs and I) SI + SD Cs. I(Tl) Density(g/cm 3) 4. 53 Decay Time(ns) ~1000 Peak emission(nm) 550 Hygroscopicity slight Na. I(Tl) 3. 67 ~230 415 strong Disadvantages Emission spectra does not match with normal bi-alkali PMT 137 Cs(t 134 Cs(t 1/2 ~30 y) , 1/2 ~2 y) may be problematic

Low energy signal with Cs. I(Tl) 3” Green Extended Rb. Cs PMT (Electron Tubes) Low energy signal with Cs. I(Tl) 3” Green Extended Rb. Cs PMT (Electron Tubes) Digital Oscilloscope with 10 ns bin Large crystal (7 x 7 x 30 cm) : ~ 4. 5 p. e. /ke. V Small crystal(3 x 3 x 3 cm) : ~ 6 p. e. /ke. V

Response of Cs. I(Tl) with elastically scattered neutron • Cs. I(Na) has spurious events Response of Cs. I(Tl) with elastically scattered neutron • Cs. I(Na) has spurious events due to surface effect • 2 ke. V threshold ~ 10 ke. V recoil energy

Pulse shape discrimination at ~ ke. V energy • Nuclear recoil vs gamma events Pulse shape discrimination at ~ ke. V energy • Nuclear recoil vs gamma events • Mean time for each events for each photoelectrons in an event 4

Comparison of PSD power Na. I(Tl) Ideal detector ~ 1, ~ 0 K << Comparison of PSD power Na. I(Tl) Ideal detector ~ 1, ~ 0 K << 1 cut Cs. I(Tl) B S S B

Underground Site • Location : minimum 350 m underground Access tunnel(1. 4 km) 350 Underground Site • Location : minimum 350 m underground Access tunnel(1. 4 km) 350 m Laboratory Power plant

Background of Cs. I(Tl) • 137 Cs • • (artificial) 134 Cs (artificial+133 Cs(n, Background of Cs. I(Tl) • 137 Cs • • (artificial) 134 Cs (artificial+133 Cs(n, gamma)) 87 Rb (natural) Single Crystal (~10 kg) background @ ~10 ke. V 87 Rb 137 Cs 134 Cs 0. 63 cpd/1 ppb 0. 35 cpd/1 m. Bq/kg 0. 07 cpd/1 m. Bq/kg HR ICP-MASS HPGe “ Pollucite(raw material for Cs) contains < 8 m. Bq/kg of 137 Cs

Crystals w/o selection of Cs. I powder (1) 137 Cs Dominating crystal 8. 9 Crystals w/o selection of Cs. I powder (1) 137 Cs Dominating crystal 8. 9 kg day data Geant 4 Simulation 137 Cs 155 m. Bq/kg 134 Cs ~35 m. Bq/kg 87 Rb 3. 9 ppb (ICP-MASS)

Crystals w/o selection of Cs. I powder (2) 87 Rb Dominating crystal Cs. I(Tl) Crystals w/o selection of Cs. I powder (2) 87 Rb Dominating crystal Cs. I(Tl) from IHEP(China) 137 Cs 13. 3 m. Bq/kg 134 Cs 54. 2 m. Bq/kg 87 Rb 203 ppb (ICP-MASS)

Selection of Cs. I powder from various vendors Crystals Cs. OH Cs. NO 3 Selection of Cs. I powder from various vendors Crystals Cs. OH Cs. NO 3 Cs. Mn. O 4 ~ 3 m. Bq/kg Cs. I Powders Small samples 137 Cs ~14 m. Bq/kg Rb ~ 21 ppb Chemetall Selected 137 Cs 87 Rb

Crystals with selection of Cs. I powder 1 st Demonstration of Reducing Bacground of Crystals with selection of Cs. I powder 1 st Demonstration of Reducing Bacground of Cs. I(Tl) by selecting powder. Should reduce further. 137 Cs 134 Cs 87 Rb BG(~10 ke. V) Powder 15. 5 ± 2. 6 27. 4 ± 4. 6 20. 0 ppb 20. 0 cpd Crystal 19. 8 ± 2. 5 m. Bq/kg 34. 0 ± 4. 4 23. 2 (? ) 21 cpd

Water Samples A large amount of water used for extraction Of Cs (Chemetall) Water Water Samples A large amount of water used for extraction Of Cs (Chemetall) Water samples with HPGe – Precipitation with AMP (Ammonium Molybdophosphate) “Purified” “Normal” “Ultra-pure” 137 Cs(“Normal water”) >> 137 Cs(“Purified”) ~ 20 times Water is main source !

Cs. I powder with “Purified” water • Cs. I powder with only “purified” water Cs. I powder with “Purified” water • Cs. I powder with only “purified” water in a production scale. Cs. I powder Crystal “Normal” water 15. 5 ± 2. 6 7 cpd (5. 4 cpd expected) “Purified” water 5. 3 ± 1. 0 2. 4 cpd(Expected) • Factor 3 reduction of 137 Cs with “Purified” water

Rb reduction by Recrystallization • Cs. I solubility in water is very high. • Rb reduction by Recrystallization • Cs. I solubility in water is very high. • Recrystallization is done at slightly lower temperature from saturation point. • 20 ppb powder ~ 1 ppb (< 1 cpd) Crystal growing by Bridgmann reduced Rb by about 25%

Summary of Internal Background Reduction W Crystals W/O Selection P C Purified Water P Summary of Internal Background Reduction W Crystals W/O Selection P C Purified Water P Normal Water C

External background Cosmic rays : ~ 10 -4 relative to the sea level The External background Cosmic rays : ~ 10 -4 relative to the sea level The rock composition (ICP-MASS) 238 U ~ 4. 8 ppm, 232 Th ~ 6 ppm, 40 K ~ 4 ppm With a shielding of 15 cm Pb(Boliden) + 10 cm Cu(OFHC) Can be controlled < 0. 005 cpd based a MC simulation study (GEANT 4)

Neutron Background at underground BC 501 A liquid scintillator Neutron Flux ~ 4 x Neutron Background at underground BC 501 A liquid scintillator Neutron Flux ~ 4 x 10 -5 /cm 2/sec Mainly from (alpha, n) reaction GEANT 4 simulation Can be controlled <0. 001 cpd 30 cm LSC (Outside Shielding) + 20 cm LSC(Inside Shielding)

Shielding Structure Cosmic Muon Veto Shielding Structure Cosmic Muon Veto

Neutron detector inside Copper shielding Po-Be neutron source 20 cm BC 501 A Neutron Neutron detector inside Copper shielding Po-Be neutron source 20 cm BC 501 A Neutron tagging efficiency > 75%

Sensitivity (Spin-Independent) After 1 year data taking with 100 kg Cs. I(Tl) DAMA CDMS Sensitivity (Spin-Independent) After 1 year data taking with 100 kg Cs. I(Tl) DAMA CDMS Limit 2 ke. V threshold 3 count/(kev kg day)

Summary l Extensive R&D on Cs. I(Tl) crystal has been carried out • Pulse Summary l Extensive R&D on Cs. I(Tl) crystal has been carried out • Pulse shape discrimination from -rays • Main source of 137 Cs contamination due to impure water. • Rb reduction down to ~1 ppb achieved. < 5 cpd from internal background. l Shielding capable of 250 kg of Cs. I(Tl) under construction. • Environmental background : small enough • Large (n, gamma) separable LSC inside shielding is tested. l Perspectives ~100 kg Cs. I(Tl) crystal within 1 year data taking will cover DAMA region