acc3179e10a717d8f29279894beec606.ppt
- Количество слайдов: 72
3. Diseños cuasi-experimentales Roser Bono Cabré Dpto. de Metodología de las Ciencias del Comportamiento Universidad de Barcelona rbono@ub. edu 1
Marco metodológico de la investigación psicológica Paradigma Experimental Paradigma Asociativo Hipótesis causales Hipótesis de covariación D Experimental I S E Cuasi-experimental Ñ O De encuesta S Observacional 2
Cuasi-experimentación y experimentación Características de ambos enfoques: l La experimentación y la cuasiexperimentación estudian el efecto causal de la variable independiente mediante el control preciso de las fuentes de variación extrañas. l En ambos casos, las hipótesis de investigación son causales y no meramente asociativas. 3
Limitaciones de la investigación experimental En años recientes, los investigadores sociales se han animado a cuestionar los diseños de investigación que subyacen al enfoque experimental, debido a una serie de cambios en los intereses políticos y sociales. 4
Posibles causas de la cuasiexperimentación Hay una fuerte presión que tiene su origen en los desarrollos sociales y políticos como: a) la creciente demanda en dar más protagonismo a grupos desfavorecidos. l b) la emergencia del tercer mundo y de sus problemas. l c) un mayor interés hacia temáticas feministas y campos relacionados o afines. l 5
Investigación en contextos aplicados Los cuasi-experimentos son más frecuentes en contextos aplicados, como, por ejemplo, cuando: a) Se introducen cambios en las escuelas. b) Se prueba un tiempo abierto o flexible en el mundo laboral. 6
c) Se pretende determinar la efectividad de las instituciones, instancias gubernamentales u organizaciones de servicios. En este caso, se denomina evaluación de programas. 7
En torno al término cuasiexperimento l La palabra ‘cuasi’ significa como si o casi, de modo que cuasi-experimento denota un casi experimento verdadero. l Un estudio es cuasi-experimental cuando no hay un control efectivo de las variables de selección. 8
Diseños cuasi-experimentales Hay una gran variedad de diseños de investigación cuasi-experimental y ha de reconocerse que hay poca pérdida de estatus o de prestigio al realizar un cuasiexperimento en lugar de un experimento verdadero. 9
¿Cuándo aplicaremos el enfoque cuasi? Cuando el investigador no puede cumplir los requerimientos de un experimento verdadero, debido a que no puede asignar aleatoriamente los participantes a las condiciones experimentales. 10
Estudios cuasi-experimentales Los estudios cuasi-experimentales se llevan a cabo donde existen barreras éticas y prácticas para realizar experimentos verdaderos o estudios experimentales. 11
Características Investigación básica OBJETIVOS Causalidad Investigación aplicada Causalidad y estudio del cambio EFECTOS INFERIDOS Efectos causales no espúrios Efectos causales con riesgo de espuridad SUPUESTOS Y CONDICIONES Propios del paradigma experimental FUENTES DE CONFUNDIDO Fuerte control Escaso control SELECCIÓN DE LAS UNIDADES Aleatoria Sesgada VALIDEZ ENFATIZADA Validez interna Validez externa ALCANCE DE LOS RESULTADOS Restringido Muy generalizables 12
Fases de la investigación aplicada 1. Planteo del problema 2. Formulación de la hipótesis 3. Diseño de la investigación 4. Recogida y análisis de datos 5. Interpretación de los resultados 6. Obtención de conclusiones 13
Diseño cuasi-experimental Un conjunto de procedimientos o estrategias de investigación orientado a la evaluación del impacto de los tratamientos en aquellos contextos donde la asignación de las unidades no es al azar, y al estudio de los cambios que se observan en los sujetos en función del tiempo 14
Clasificación de las estrategias cuasiexperimentales Estrategia Transversal Incluye a los diseños de comparación de grupos o de grupos paralelos Comparación estática Diseños cuasiexperimentales Estrategia Longitudinal Incluye a los diseños que repiten medidas de la variable de respuesta Comparación dinámica 15
Representación gráfica de la estrategia transversal y longitudinal -G 1 O 1 -G 2 O 2 -G 3 O 3. . G 9 O 1 G 9 O 2 G 9 O 3. . . G 9 Oj <--------- tiempo -------->. -Gi. Oj 16
Unidad de análisis y tipos de datos Unidad de análisis Sujeto individual Grupo de sujetos Tipo de datos Dato individual Dato agregado Técnicas de análisis Modelo AR Modelo ANOVA Modelo ANCOVA Modelo MANOVA Modelo ARIMA Modelo ACCP Modelo LISREL 17
Ámbitos de aplicación CONTEXTOS Clínico y Psicopatológico Psicología del desarrollo Social y evaluación de programas 18
Enfoque transversal 19
Concepto del enfoque En contextos aplicados, donde las muestras no proceden de las poblaciones según un procedimiento de selección aleatoria y los sujetos no son asignados al azar a los grupos, la investigación transversal (grupos paralelos) utiliza formatos similares a los diseños experimentales. . . //. . 20
Dentro del contexto cuasi-experimental, los sujetos van a parar al grupo de tratamiento y control por la propia decisión de los sujetos o por consideraciones prácticas. En consecuencia, los grupos experimental y control pueden ser diferentes y no comparables en oposición a lo que ocurre en la investigación aleatorizada. 21
Efecto del sesgo de selección Los diseños cuasi-experimentales, en su versión de comparación de grupos, son esquemas de investigación afectados por un sesgo de selección o por variables de selección. Esto requiere la adopción de técnicas de análisis para corregir los posibles sesgos y neutralizar las variables de selección, de modo que se infiera el efecto de los tratamientos sin que esté contaminado por las diferencias iniciales de los grupos. Las diferencias iniciales de los grupos los hacen no comparables o no equivalentes, siendo éste el sentido último del enfoque cuasi-experimental transversal. 22
Clasificación del diseño transversal 23
24
Enfoque longitudinal 25
Concepto del enfoque El objetivo de los estudios longitudinales es analizar los procesos de cambio y explicarlos. Se pretende caracterizar el cambio de la variable de respuesta en función del tiempo y examinar qué covariables contribuyen al cambio. Uno de los aspectos específicos del enfoque longitudinal es tomar registros u observaciones de la misma (o mismas) unidades a lo largo del tiempo. . . //. . 26
De ahí, el porqué lo longitudinal está siempre asociado a los cambios intraindividuales. Ha de tenerse en cuenta que, en estos estudios, no siempre las unidades de observación o análisis son los individuos, ya que pueden ser unidades más amplias como barrios, áreas urbanas, familias, fábricas, ciudades, países, etc. 27
Medida del cambio Los diseños longitudinales usan, como estrategia de recogida de datos, la técnica de medidas repetidas. De este modo, cada unidad de trabajo (por lo general, individuos) es medida en distintos puntos del tiempo, de forma secuencial. . . //. . 28
Puesto que no es posible prescindir de los diseños longitudinales para el estudio del cambio, conviene tener en cuenta la forma como se obtienen los datos y la distinción entre los modelos de cambio intraindividual y los modelos de cambio interindividual. . . //. . 29
Es decir, entre los modelos que analizan y describen los patrones de cambio durante el desarrollo de un individuo y los modelos que analizan los patrones de cambio al comparar dos o más grupos de sujetos. Esta nueva perspectiva del estudio del cambio configura un enfoque mucho más coherente y comprensivo del diseño longitudinal. 30
Clasificación del diseño longitudinal 31
Criterios de clasificación Cantidad de unidades Criterios de clasificación Amplitud y frecuencia del intervalo Cantidad de unidades Diseños de un solo sujeto o unidad observacional Diseños de un grupo o k grupos de sujetos 32
Amplitud y frecuencia del intervalo 33
Diseños transversales 34
Diseños de grupo control no equivalente 35
Concepto Este diseño de investigación, dominado inicialmente por Campbell y Stanley (1963) diseño de grupo control no equivalente, es un formato donde se toman, de cada sujeto, registros o medidas antes y después de la aplicación del tratamiento. Debido precisamente a la ausencia de aleatorización en la asignación de las unidades, es posible que se den diferencias en las puntuaciones antes. . . //. . 36
Estas diferencias son la causa de la noequivalencia inicial de los grupos. Así, cuando en la formación de los grupos no interviene el azar, es posible que los grupos presenten sesgos capaces de contaminar el efecto del tratamiento. . . //. . 37
Partiendo de este planteamiento, se tienen diseños cuyos grupos no pueden ser considerados ni homogéneos, ni comparables. Por esta razón, se han buscado alternativas al clásico modelo de Análisis de la Variancia a fin de modelar, en el supuesto de que se conozcan, las potenciales fuentes de sesgo y distorsión y, de esa forma, controlarlas. 38
El porqué de las diferencias antes Las diferencias entre las puntuaciones antes se dan por la siguientes razones: 1. Cuando el tratamiento es aplicado a un grupo (escuela, clase, planta industrial, etc. ), y otro grupo (escuela, clase, planta industrial etc. , ) es tomado como control. 2. Cuando se ha planificado un auténtico experimento, pero por razones de mortalidad, contaminación de las unidades del grupo control por los artefactos experimentales o por la variación del tratamiento experimental, el experimento verdadero se convierte en un cuasi-experimento. . . //. . 39
3. Cuando, debido a la limitación de recursos, el tratamiento sólo es aplicado a un grupo seleccionado. 4. Cuando los sujetos se auto-seleccionan. 40
Clasificación Diseño de grupo control no equivalente con sólo medidas después (posttratamiento) Diseño de grupo control no equivalente con medidas antes y después (medidas pre y post-tratamiento) 41
Matriz de datos del diseño de grupo control no equivalente con sólo medidas después 42
Matriz de datos del diseño de grupo control no equivalente con medidas antes y después 43
Diseño de grupo control no equivalente Técnicas de análisis • Análisis de la covariancia (ANCOVA) • Análisis de la variancia con puntuaciones de diferencia 44
ANCOVA Control X Y Experimental XY X Y XY 45
ANOVA de puntuaciones de diferencia Control X Y Experimental Y-X X Y Y-X 46
Ejemplo práctico Una empresa de automóviles desea probar la eficacia de un nuevo programa de incentivos destinado a incrementar el ritmo de producción de sus operarios. A tal fin, se seleccionan dos secciones de montaje de dos factorías distintas de dicha empresa: una seguirá su ritmo habitual de trabajo (grupo control), mientras que en la otra se implementará un programa de incentivos (grupo experimental). Se tomarán medidas de ambos grupos antes y después de aplicar el tratamiento —programa de incentivos—. La variable dependiente será el número de piezas montadas en una hora. Los datos hipotéticos de este cuasi-experimento se presentan en la tabla siguiente. 47
Diseño de grupo control no equivalente Control Medias: ( )2 ( )( ) X 3 6 5 4 3 4, 2 21 95 Y 6 7 7 6 5 6, 2 31 195 134 Experimental X Y 5 9 7 10 6 8 5 9 4 7 5, 4 8, 6 27 43 151 375 236 48
ANCOVA 49
Prueba de homogeneidad de los coeficientes de la regresión H 0: 1= 2 Y A 1 b 2 A 2 X 50
Output SPSS 51
ANOVA con datos de diferencia 52
DISEÑO DE GRUPO CONTROL NO EQUIVALENTE Control Experimental X Y Y-X 3 6 3 5 9 4 6 7 10 3 5 7 2 6 8 2 4 6 2 5 9 4 3 5 2 4 7 3 Medias: 4, 2 6, 2 2 5, 4 8, 6 3, 2 ( ): 21 31 10 27 43 16 95 195 22 151 375 54 ( )2 53
Output SPSS 54
Diseños de grupos no equivalentes 55
Concepto La extensión lógica del diseño de grupo control no equivalente con medidas antes y después es el diseño con múltiples grupos no equivalentes; es decir, un diseño multigrupo formado por un conjunto de grupos intactos procedentes de poblaciones distintas o no seleccionados al azar. . . //. . 56
Según esta estructura de trabajo, se trata de averiguar si hay efecto de tratamiento. Se pretende estudiar la posible relación causal entre el factor de tratamiento y la variable de resultado. Mediante este formato cuasi-experimental o de grupos de selección, las diferencias previas (de selección) entre los grupos pueden causar cambios en la variable de resultado sin efecto alguno de tratamiento. . . //. . 57
De ahí, lo importante en tener en cuenta las diferencias iniciales de los grupos (diferencias de selección), mediante algún tipo de control estadístico. 58
Diseño de discontinuidad en la regresión 59
Concepto El diseño de discontinuidad en la regresión ofrece mejores perspectivas que el diseño de grupos no equivalentes, dado que se conoce la naturaleza del proceso de selección de los grupos (o asignación de las unidades de estudio). . //. . 60
Aunque es escasa la utilización de esta estrategia, constituye un buen ejemplo de cómo es posible verificar el efecto del tratamiento mediante grupos organizados en función de los valores de la variable pretratamiento. En la práctica, su uso se ha limitado al ámbito de la investigación sobre educación compensatoria (Trochim, 1984) 61
Lógica del diseño Según la lógica del diseño, los sujetos son considerados, a partir de un punto de corte en la variable pre-tratamiento, como pertenecientes al grupo control o experimental (grupo de tratamiento). Por esta razón, la estrategia de discontinuidad en la regresión requiere que se conozca el criterio de formación del grupo control y grupo experimental (o de tratamiento); es decir, el criterio de selección. 62
Representación gráfica Una clara ilustración de la modelación del procedimiento de selección es el uso de una puntuación pre-test (pre-tratamiento) en la asignación de los sujetos a los grupos de tratamiento (control y experimental). La estructura del diseño de discontinuidad en la regresión suele representarse, por lo general, en forma gráfica. . . //. . 63
El eje de las ordenadas representa los valores de la variable de resultado y el eje de las abcisas los valores de la covariable donde está marcado un punto de corte, X 0, para queden delimitados los grupos. 64
65
Ejemplo práctico El propósito del análisis de datos es, en esta clase de diseños, comparar dos ecuaciones de la regresión en el punto de corte. Se pretende, por ejemplo, estudiar el efecto de un programa sobre el rendimiento laboral. Puesto que los sujetos seleccionados que van a seguir el programa presentan niveles más altos en variables relacionadas con el rendimiento que los controles, se decide utilizar esta información previa como covariable. 66
De acuerdo con la estrategia del diseño, los sujetos que puntúan bajo en la covariable actúan de grupo experimental o de tratamiento y los que puntúan alto, de grupo control. A continuación se presentan los datos de este hipotético estudio, donde los sujetos que reciben tratamiento obtienen puntuaciones entre 1 y 5 en la covariable, y los sujetos control entre 6 y 10. El punto de corte se sitúa en el intervalo 5 -6. 67
La asignación de los sujetos a un grupo u otro (control o experimental) es arbitraria y depende de los objetivos de la investigación. 68
ANCOVA Asumiendo la homogeneidad de las pendientes 69
Patrones hipotéticos de las líneas de regresión 70
Variable de selección y diseño Azar V. S. (? ) D. Exp. DGNE V. S. (Pre) DDR 71
Fin de los Diseños cuasiexperimentales transversales 72
acc3179e10a717d8f29279894beec606.ppt