
7c1e20a79aaa314b8cfdbb70b4a6d978.ppt
- Количество слайдов: 31
22. 033 Mission to Mars Presentation of proposed mission plan http: //web. mit. edu/22. 033/www/ 02. 20. 03 MIT : NED : 22. 033 1
Introduction • Team Members: Dr. Andrew Kadak; Vasek Dostal; Kalina Galabova ; Knut Gezelius; John Koser; Joe Palaia; Nilchiani Roshanak; Eugene Shwageraus; Pete Yarsky 02. 20. 03 MIT : NED : 22. 033 2
Overview • Statement of Purpose: – To form a plan for a series of Mars missions utilizing nuclear energy, which, through technological verification, will allow subsequent capability expansion and finally for a manned mission to Mars. 02. 20. 03 MIT : NED : 22. 033 3
Requirements and Constraints • Demonstrate feasibility of nuclear powered space propulsion • Allow safe transport of humans to and from Mars • Expand the scientific capacity of individual missions • Reduce astronauts’ radiation exposure • Deployable by near term • The technology is transformational 02. 20. 03 MIT : NED : 22. 033 4
Mission Objectives • Total of 4 missions are planned. • Manned missions will be scheduled to reduce exposure in CGR 02. 20. 03 MIT : NED : 22. 033 5
Mission 1 • Nuclear Powered (100– 200 k. We) Mars Telecommunications Satellite 02. 20. 03 MIT : NED : 22. 033 6
M 1 Objectives – High data rate communication – Increase the science yield (data storage) – Validate space nuclear reactor technology – Validate reactor powered propulsion technology for Earth-Mars transfer. – Provide a platform for high power Mars orbit experiments (active radar) – Provide real-time orbital video and high resolution pictures 02. 20. 03 MIT : NED : 22. 033 7
02. 20. 03 MIT : NED : 22. 033 8
Mission 2 • Nuclear Powered Mars Surface Lander with In-Situ Resource Utilization, Sample Return, and Demonstration of the Mars Transfer System 02. 20. 03 MIT : NED : 22. 033 9
M 2 Objectives – Demonstrate LEO to LMO transfer – Demonstrate surface reactor operation – Validate ISRU – Demonstrate rover refueling operations – Provide surface data link to satellite – Fuel a sample capsule assent rocket – Launch a sample capsule to LMO – Demonstrate automated Mars orbital rendezvous – Return selected samples to Earth (ISS) 02. 20. 03 MIT : NED : 22. 033 10
02. 20. 03 MIT : NED : 22. 033 11
02. 20. 03 MIT : NED : 22. 033 12
02. 20. 03 MIT : NED : 22. 033 13
Mission 3 • Manned Mission Precursor – Development and Demonstrate Infrastructure to prepare for arrival of the human crew. 02. 20. 03 MIT : NED : 22. 033 14
M 3 Objectives - Define a robust planetary surface exploration capacity capable of safely and productively supporting crews on the surface of Mars for 500 to 600 days each mission - Define a capability to be able to live off the land - Ensure Infrastructure is operational before a crew is committed to the site 02. 20. 03 MIT : NED : 22. 033 15
M 3 Phase 1 • Launch a full scale NP ISRU Plant • Demonstrate Large Scale ISRU on Mars 02. 20. 03 MIT : NED : 22. 033 16
M 3 Phase 2 • Launch Crew Habitat Module into LEO after successfully completing Phase 1. 02. 20. 03 MIT : NED : 22. 033 17
M 3 Phase 3 • Dock Habitat with ISS • Test Habitat Functionality at the ISS 02. 20. 03 MIT : NED : 22. 033 18
M 3 Phase 4 • Ascent Vehicle and Cargo is landed on the Mars surface near Large Scale ISRU plant 02. 20. 03 MIT : NED : 22. 033 19
M 3 Phase 5 • Power Systems and Rovers are Deployed • Production of Propellant and Oxidizer Begins • Ascent Vehicle Fueled 02. 20. 03 MIT : NED : 22. 033 20
M 3 Phase 6 • Unmanned Surface Habitat landed on Mars 02. 20. 03 MIT : NED : 22. 033 21
M 4 Objectives – Land people on Mars and return them safely to Earth. – Effectively perform useful work on the surface of Mars. – Support people on Mars for 2 years or more without resupply. – Support people away from Earth for periods of time consistent with Mars mission durations (2 to 3 years) – Identify space transportation and surface systems consistent with objectives at affordable cost. 02. 20. 03 MIT : NED : 22. 033 22
M 4 Phase 1 • MTS deployed to Mars with Human Crew, Habitat, Second Ascent Vehicle, and Ground Rover 02. 20. 03 MIT : NED : 22. 033 23
M 4 Phase 2 • Human Crew lands on surface and positions habitats 02. 20. 03 MIT : NED : 22. 033 24
M 4 Phase 3 • Pressurized Rover docks with habitat 02. 20. 03 MIT : NED : 22. 033 25
M 4 Phase 4 • First Ascent Vehicle is used to send crew to LMO • Second Ascent Vehicle is fueled and remains on Mars 02. 20. 03 MIT : NED : 22. 033 26
M 4 Phase 5 • Ascent Vehicle and human crew rendezvous with MTS for return trip to Earth 02. 20. 03 MIT : NED : 22. 033 27
M 4 Phase 6 • Crew returns to Earth • Habitat and ISRU infrastructure and a fully fueled ascent vehicle are on Mars to support further, larger manned missions 02. 20. 03 MIT : NED : 22. 033 28
Technology Fission Options Option T/W Power [MW] Isp [sec] Thrust [k. N] Technology status Nuclear thermal rocket/ Bimodal (NTR) 6 -10 500 -5000 900 -1200 100 -1000 Mature Particle-Bed/Vapor Core/Liquid Core 5 -30 <5000 800 -1500 10 -1000 Materials and Radioactivity Release Concerns Fission fragment rocket >10 <10000 1000 -1 e 6 3000 Same as above Nuclear Electric Propulsion (NEP) 02. 20. 03 MIT : NED : 22. 033 29
Technology Exotic Options Energy source Option Radioisotope powered Radioactive isotope decay heat Nuclear Pulse Rocket (ORION) fission 02. 20. 03 Thrust 700 -800 1 -2 N 2000 -3000 Inertial/Magnetic/Electric fusion confinement fusion (ICF)/(MFC)/(EFC) Antimatter Propulsion Concepts Isp [sec] 20, 000 matter-antimatter annihilation 1, 000 -100, 000 MIT : NED : 22. 033 Technology Concerns Materials cost and availability, low power Mature but forbidden by international treaties. 10, 000 k. N require substantial development effort uncertain, potentially deployable in a distant future 30
Epilogue • In Conclusion: – 4 Missions planned to be completed before 2020 – Each mission builds off technology demonstrated in previous missions – Essential Infrastructure is developed and deployed on Mars to support further human exploration 02. 20. 03 MIT : NED : 22. 033 31