Скачать презентацию 22 033 Mission to Mars Presentation of proposed Скачать презентацию 22 033 Mission to Mars Presentation of proposed

7c1e20a79aaa314b8cfdbb70b4a6d978.ppt

  • Количество слайдов: 31

22. 033 Mission to Mars Presentation of proposed mission plan http: //web. mit. edu/22. 22. 033 Mission to Mars Presentation of proposed mission plan http: //web. mit. edu/22. 033/www/ 02. 20. 03 MIT : NED : 22. 033 1

Introduction • Team Members: Dr. Andrew Kadak; Vasek Dostal; Kalina Galabova ; Knut Gezelius; Introduction • Team Members: Dr. Andrew Kadak; Vasek Dostal; Kalina Galabova ; Knut Gezelius; John Koser; Joe Palaia; Nilchiani Roshanak; Eugene Shwageraus; Pete Yarsky 02. 20. 03 MIT : NED : 22. 033 2

Overview • Statement of Purpose: – To form a plan for a series of Overview • Statement of Purpose: – To form a plan for a series of Mars missions utilizing nuclear energy, which, through technological verification, will allow subsequent capability expansion and finally for a manned mission to Mars. 02. 20. 03 MIT : NED : 22. 033 3

Requirements and Constraints • Demonstrate feasibility of nuclear powered space propulsion • Allow safe Requirements and Constraints • Demonstrate feasibility of nuclear powered space propulsion • Allow safe transport of humans to and from Mars • Expand the scientific capacity of individual missions • Reduce astronauts’ radiation exposure • Deployable by near term • The technology is transformational 02. 20. 03 MIT : NED : 22. 033 4

Mission Objectives • Total of 4 missions are planned. • Manned missions will be Mission Objectives • Total of 4 missions are planned. • Manned missions will be scheduled to reduce exposure in CGR 02. 20. 03 MIT : NED : 22. 033 5

Mission 1 • Nuclear Powered (100– 200 k. We) Mars Telecommunications Satellite 02. 20. Mission 1 • Nuclear Powered (100– 200 k. We) Mars Telecommunications Satellite 02. 20. 03 MIT : NED : 22. 033 6

M 1 Objectives – High data rate communication – Increase the science yield (data M 1 Objectives – High data rate communication – Increase the science yield (data storage) – Validate space nuclear reactor technology – Validate reactor powered propulsion technology for Earth-Mars transfer. – Provide a platform for high power Mars orbit experiments (active radar) – Provide real-time orbital video and high resolution pictures 02. 20. 03 MIT : NED : 22. 033 7

02. 20. 03 MIT : NED : 22. 033 8 02. 20. 03 MIT : NED : 22. 033 8

Mission 2 • Nuclear Powered Mars Surface Lander with In-Situ Resource Utilization, Sample Return, Mission 2 • Nuclear Powered Mars Surface Lander with In-Situ Resource Utilization, Sample Return, and Demonstration of the Mars Transfer System 02. 20. 03 MIT : NED : 22. 033 9

M 2 Objectives – Demonstrate LEO to LMO transfer – Demonstrate surface reactor operation M 2 Objectives – Demonstrate LEO to LMO transfer – Demonstrate surface reactor operation – Validate ISRU – Demonstrate rover refueling operations – Provide surface data link to satellite – Fuel a sample capsule assent rocket – Launch a sample capsule to LMO – Demonstrate automated Mars orbital rendezvous – Return selected samples to Earth (ISS) 02. 20. 03 MIT : NED : 22. 033 10

02. 20. 03 MIT : NED : 22. 033 11 02. 20. 03 MIT : NED : 22. 033 11

02. 20. 03 MIT : NED : 22. 033 12 02. 20. 03 MIT : NED : 22. 033 12

02. 20. 03 MIT : NED : 22. 033 13 02. 20. 03 MIT : NED : 22. 033 13

Mission 3 • Manned Mission Precursor – Development and Demonstrate Infrastructure to prepare for Mission 3 • Manned Mission Precursor – Development and Demonstrate Infrastructure to prepare for arrival of the human crew. 02. 20. 03 MIT : NED : 22. 033 14

M 3 Objectives - Define a robust planetary surface exploration capacity capable of safely M 3 Objectives - Define a robust planetary surface exploration capacity capable of safely and productively supporting crews on the surface of Mars for 500 to 600 days each mission - Define a capability to be able to live off the land - Ensure Infrastructure is operational before a crew is committed to the site 02. 20. 03 MIT : NED : 22. 033 15

M 3 Phase 1 • Launch a full scale NP ISRU Plant • Demonstrate M 3 Phase 1 • Launch a full scale NP ISRU Plant • Demonstrate Large Scale ISRU on Mars 02. 20. 03 MIT : NED : 22. 033 16

M 3 Phase 2 • Launch Crew Habitat Module into LEO after successfully completing M 3 Phase 2 • Launch Crew Habitat Module into LEO after successfully completing Phase 1. 02. 20. 03 MIT : NED : 22. 033 17

M 3 Phase 3 • Dock Habitat with ISS • Test Habitat Functionality at M 3 Phase 3 • Dock Habitat with ISS • Test Habitat Functionality at the ISS 02. 20. 03 MIT : NED : 22. 033 18

M 3 Phase 4 • Ascent Vehicle and Cargo is landed on the Mars M 3 Phase 4 • Ascent Vehicle and Cargo is landed on the Mars surface near Large Scale ISRU plant 02. 20. 03 MIT : NED : 22. 033 19

M 3 Phase 5 • Power Systems and Rovers are Deployed • Production of M 3 Phase 5 • Power Systems and Rovers are Deployed • Production of Propellant and Oxidizer Begins • Ascent Vehicle Fueled 02. 20. 03 MIT : NED : 22. 033 20

M 3 Phase 6 • Unmanned Surface Habitat landed on Mars 02. 20. 03 M 3 Phase 6 • Unmanned Surface Habitat landed on Mars 02. 20. 03 MIT : NED : 22. 033 21

M 4 Objectives – Land people on Mars and return them safely to Earth. M 4 Objectives – Land people on Mars and return them safely to Earth. – Effectively perform useful work on the surface of Mars. – Support people on Mars for 2 years or more without resupply. – Support people away from Earth for periods of time consistent with Mars mission durations (2 to 3 years) – Identify space transportation and surface systems consistent with objectives at affordable cost. 02. 20. 03 MIT : NED : 22. 033 22

M 4 Phase 1 • MTS deployed to Mars with Human Crew, Habitat, Second M 4 Phase 1 • MTS deployed to Mars with Human Crew, Habitat, Second Ascent Vehicle, and Ground Rover 02. 20. 03 MIT : NED : 22. 033 23

M 4 Phase 2 • Human Crew lands on surface and positions habitats 02. M 4 Phase 2 • Human Crew lands on surface and positions habitats 02. 20. 03 MIT : NED : 22. 033 24

M 4 Phase 3 • Pressurized Rover docks with habitat 02. 20. 03 MIT M 4 Phase 3 • Pressurized Rover docks with habitat 02. 20. 03 MIT : NED : 22. 033 25

M 4 Phase 4 • First Ascent Vehicle is used to send crew to M 4 Phase 4 • First Ascent Vehicle is used to send crew to LMO • Second Ascent Vehicle is fueled and remains on Mars 02. 20. 03 MIT : NED : 22. 033 26

M 4 Phase 5 • Ascent Vehicle and human crew rendezvous with MTS for M 4 Phase 5 • Ascent Vehicle and human crew rendezvous with MTS for return trip to Earth 02. 20. 03 MIT : NED : 22. 033 27

M 4 Phase 6 • Crew returns to Earth • Habitat and ISRU infrastructure M 4 Phase 6 • Crew returns to Earth • Habitat and ISRU infrastructure and a fully fueled ascent vehicle are on Mars to support further, larger manned missions 02. 20. 03 MIT : NED : 22. 033 28

Technology Fission Options Option T/W Power [MW] Isp [sec] Thrust [k. N] Technology status Technology Fission Options Option T/W Power [MW] Isp [sec] Thrust [k. N] Technology status Nuclear thermal rocket/ Bimodal (NTR) 6 -10 500 -5000 900 -1200 100 -1000 Mature Particle-Bed/Vapor Core/Liquid Core 5 -30 <5000 800 -1500 10 -1000 Materials and Radioactivity Release Concerns Fission fragment rocket >10 <10000 1000 -1 e 6 3000 Same as above Nuclear Electric Propulsion (NEP) 02. 20. 03 MIT : NED : 22. 033 29

Technology Exotic Options Energy source Option Radioisotope powered Radioactive isotope decay heat Nuclear Pulse Technology Exotic Options Energy source Option Radioisotope powered Radioactive isotope decay heat Nuclear Pulse Rocket (ORION) fission 02. 20. 03 Thrust 700 -800 1 -2 N 2000 -3000 Inertial/Magnetic/Electric fusion confinement fusion (ICF)/(MFC)/(EFC) Antimatter Propulsion Concepts Isp [sec] 20, 000 matter-antimatter annihilation 1, 000 -100, 000 MIT : NED : 22. 033 Technology Concerns Materials cost and availability, low power Mature but forbidden by international treaties. 10, 000 k. N require substantial development effort uncertain, potentially deployable in a distant future 30

Epilogue • In Conclusion: – 4 Missions planned to be completed before 2020 – Epilogue • In Conclusion: – 4 Missions planned to be completed before 2020 – Each mission builds off technology demonstrated in previous missions – Essential Infrastructure is developed and deployed on Mars to support further human exploration 02. 20. 03 MIT : NED : 22. 033 31