Скачать презентацию WHO WE ARE QWED is a company Скачать презентацию WHO WE ARE QWED is a company

d7e164994b53f0ad8dfe285c4343154a.ppt

  • Количество слайдов: 66

WHO WE ARE • QWED is a company of the limited liability type, • WHO WE ARE • QWED is a company of the limited liability type, • set up in 1997 by four academics originating from the Institute of Radioelectronics, Warsaw University of Technology.

QWED Sp. z o. o. ul. Krzywickiego 12 lok. 1 02 -078 Warsaw, POLAND QWED Sp. z o. o. ul. Krzywickiego 12 lok. 1 02 -078 Warsaw, POLAND fax: +48 22 621 62 99 tel. : +48 22 625 73 19 [email protected] com. pl www. qwed. com. pl

Founders and Main Software Authors • • Prof. Wojciech Gwarek, President Dr. Malgorzata Celuch, Founders and Main Software Authors • • Prof. Wojciech Gwarek, President Dr. Malgorzata Celuch, V-ce President Dr. Maciej Sypniewski Dr. Andrzej Wieckowski

Co-Authors of Optional Modules • Prof. Michal Mrozowski – QProny Module • Prof. Leszek Co-Authors of Optional Modules • Prof. Michal Mrozowski – QProny Module • Prof. Leszek Opalski – QW-Optimiser. Plus

Consultancy • • Prof. Wojciech Gwarek Dr. Malgorzata Celuch Dr. Maciej Sypniewski Dr. Andrzej Consultancy • • Prof. Wojciech Gwarek Dr. Malgorzata Celuch Dr. Maciej Sypniewski Dr. Andrzej Wieckowski • • • Prof. Michał Mrozowski Prof. Jerzy Krupka Prof. Leszek Opalski Dr. Jerzy Piotrowski Dr. Wojciech Wojtasiak

What We Do We invent and commercially develop electromagnetic software packages, of the Quick. What We Do We invent and commercially develop electromagnetic software packages, of the Quick. Wave series.

What We Do We also apply this software to electromagnetic research and industrial design. What We Do We also apply this software to electromagnetic research and industrial design.

What We Do In collaboration with the Institute of Radioelectronics, we offer design and What We Do In collaboration with the Institute of Radioelectronics, we offer design and material measurement services for high-power applications.

Areas of Software Application in Industry • • • Telecommunication industry Electronics industry Microwave Areas of Software Application in Industry • • • Telecommunication industry Electronics industry Microwave oven industry Automobile industry Food processing industry Industrial microwave chemistry

Areas of Software Application in Science • Space and atmosphere research • Microwave heating Areas of Software Application in Science • Space and atmosphere research • Microwave heating • Electromagnetic impact on biological tissues • Electronics

Examples of Applications (ex. 1. 1) WR-10 waveguide quadrature hybrid with six branch lines Examples of Applications (ex. 1. 1) WR-10 waveguide quadrature hybrid with six branch lines Design, measurements and QW-3 D simulations: S. Srikanth and A. R. Kerr, National Radio Astronomy Observatory, Charlottesville, VA 22903, USA

Examples of Applications (ex. 1. 2) Amplitude and phase imbalance – from the measured Examples of Applications (ex. 1. 2) Amplitude and phase imbalance – from the measured (MS-noisy) and simulated (QWB-smooth) results. (S. Srikanth and A. R. Kerr, National Radio Astronomy Observatory, Charlottesville, VA 22903, USA) For more QW-3 D results at NRAO, see: ALMA Memos 381, 343, 325, 278 You will find them at: http: //www. mma. nrao. edu/memos/html-memos/alma 278/memo 278. pdf http: //www. mma. nrao. edu/memos/html-memos/alma 343/memo 343. pdf http: //www. mma. nrao. edu/memos/html-memos/alma 325/memo 325. pdf http: //www. mma. nrao. edu/memos/html-memos/alma 278/memo 278. pdf

Examples of Application (ex. 2) E-plane waveguide diplexer Transmission into higher-frequency (upper) and lower-frequency(lower) Examples of Application (ex. 2) E-plane waveguide diplexer Transmission into higher-frequency (upper) and lower-frequency(lower) channels: measurements simulations Design, measurements and QW-3 D simulations: T. Schnabel, Zomatch, CA

Examples of Applications (ex. 3) Pyramidal horn antenna Design & measurements: Prof. B. Stec, Examples of Applications (ex. 3) Pyramidal horn antenna Design & measurements: Prof. B. Stec, Technical Military Academy, Poland Simulations: QWED ------ vertical plane measured ____ vertical plane simulated ------ horizontal plane measured ____ horizontal plane simulated

Examples of Application (ex. 4) Axisymmetrical corrugated horn H at 13. 75 GHz Design Examples of Application (ex. 4) Axisymmetrical corrugated horn H at 13. 75 GHz Design & measurements: P. Brachat, IEEE Trans. AP, April 1994 QW-V 2 D simulations: QWED Radiation patterns at 13. 75 GHz

Examples of Application (ex. 5) Dielectric waveguide coupler - a tutorial example from QW-3 Examples of Application (ex. 5) Dielectric waveguide coupler - a tutorial example from QW-3 D manual Low-permittivity dielectric cross with high-permittivity slab Fundamental mode pattern at 96. 7 GHz Envelope of vertical E-field at 95 GHz Wide-band S-parameters indicating power loss due to higher modes and /or radation

Examples of Application (ex. 6) A tutorial example of TDR from QW-3 D manual Examples of Application (ex. 6) A tutorial example of TDR from QW-3 D manual Time-domain electric (above) and magnetic (below) fields revealing location and kind of the discontinuity A strip-line structure terminated with a narrow grounded strip; lower half due to magnetic symmetry condition considered

Examples of Application (ex. 7) Thawing a beefburger in a household oven; QW-3 D Examples of Application (ex. 7) Thawing a beefburger in a household oven; QW-3 D with QW-BHM Left: system view Right: dissipated power patterns through beef and bread, produced by QW 3 D under the assumption of constant media parameters at either -20 deg or +20 deg. Left: temperature-dependent media characteristics automatically considered by QW-BHM option Right: resulting temperature pattern produced by QW-3 D with QW-BHM. Due to thermal runaway effect, after 35 sec. of heating a hot spot is created in bread while beef remains frozen.

Examples of Application More on microwave heating For more examples of QW-3 D application Examples of Application More on microwave heating For more examples of QW-3 D application by our users, please refer to the projects run at Worcester Polytechnic Institute and reported at: http: //www. wpi. edu/Academics/Depts/Math/CIMS/immg/activ. htm You will also find there an independent review of commercial EM software packages: Comparative Analysis of Commercial Electromagnetic Software

How We Commercialise Our Concepts and Products • • Sales of Quick. Wave software How We Commercialise Our Concepts and Products • • Sales of Quick. Wave software packages Licensing Technical consulting Industrial design

What Makes QWED Special • Our products are developed by researchers and engineers, who What Makes QWED Special • Our products are developed by researchers and engineers, who understand the customer’s problem on both software and technology levels. • Our support staff will offer customers unmatched level of skill and commitment.

What Is Quick. Wave is a cutting edge software which makes possible electromagnetic analysis What Is Quick. Wave is a cutting edge software which makes possible electromagnetic analysis and reliable design without hardware prototyping

What Is Quick. Wave Software implemented for the Windows platform, with a user-friendly interface, What Is Quick. Wave Software implemented for the Windows platform, with a user-friendly interface, including libraries of parameterised designs

What Is Quick. Wave A product based on long term original research conducted by What Is Quick. Wave A product based on long term original research conducted by its authors and disseminated in over one hundred publications

What Makes Quick. Wave Special The only EM software for fast 3 D design What Makes Quick. Wave Special The only EM software for fast 3 D design with no need for 3 D drawing! Take a look at our parameterised element libraries further herein. The only FDTD software offering fully conformal boundary models with no need for time-step reduction! Take a look at our conformal models with clever cell merging. Accuracy improvement with respect to both stair-case FDTD and brute-force conformal FDTD without cell merging are shown further

Quick. Wave Features • Conformal meshing and conformal FDTD algorithms • Convenient GUI with Quick. Wave Features • Conformal meshing and conformal FDTD algorithms • Convenient GUI with libraries of parameterised objects • Extraction of S-parameters, also in multimodal lines and below cut-off • Excitation with user-defined source type, pulse type, available power, delay • Electric, magnetic and metal losses • Extensive display of absolute values of fields & power • Extraction of average dissipated power, also in multimodal structures • Batch operation, freeze function, multithread options • Interfaces to optimisers for automatic design

Unique Features standard FDTD conformal mesh in QW-3 D Unique Features standard FDTD conformal mesh in QW-3 D

Unique Features standard FDTD cells in “stair-case” FDTD air dielectric metal examples of conformal Unique Features standard FDTD cells in “stair-case” FDTD air dielectric metal examples of conformal cells in Quick. Wave dielectric media interfaces metal boundaries

Unique Features coaxial line in QW-3 D (left) and in stair-case FDTD (right) Unique Features coaxial line in QW-3 D (left) and in stair-case FDTD (right)

Unique Features PEC Offset metal boundary creating a small cell: 1. Stair-case - neglect Unique Features PEC Offset metal boundary creating a small cell: 1. Stair-case - neglect small cell 2. Brute force conformal - leave small cell, reduce time step 3. Advanced conformal - merge cells For effects on accuracy, please refer to QWED's past events and look for May 2001 IEEE IMS presentation by M. Celuch

Unique Features user interface based on parameterised element libraries Just pick up your structure, Unique Features user interface based on parameterised element libraries Just pick up your structure, set the parameters, and run a full 3 D simulation with no need for 3 D drawing!

Unique Features some specialised libraries Our typical dialogue for parameter setting Unique Features some specialised libraries Our typical dialogue for parameter setting

Unique Features Accurate S-parameter extraction including multi-modal transmission lines and evanescent modes Allows circuit Unique Features Accurate S-parameter extraction including multi-modal transmission lines and evanescent modes Allows circuit partitioning close to discontinuities For details and examples, please refer to QWED's past events and look for May 2001 IEEE IMS presentation by W. Gwarek

Unique Features Fast automatic design with Quick. Wave software interfaces to external optimisers, e. Unique Features Fast automatic design with Quick. Wave software interfaces to external optimisers, e. g. : Matlab tools in-house QW-Optimiser For details and examples, please refer to QWED's past events and look for June 2001 IEEE IMS workshop presentation by W. Gwarek

Quick. Wave-3 D QW-3 D - Our Flagship Product A general-purpose 3 D electromagnetic Quick. Wave-3 D QW-3 D - Our Flagship Product A general-purpose 3 D electromagnetic software Includes QW-Editor and QW-Simulator, in a full 3 D regime

QW-V 2 D A vector 2 D electromagnetic software applicable to the analysis of QW-V 2 D A vector 2 D electromagnetic software applicable to the analysis of axisymmetrical devices (antennas-as big as 150 wavelength or more!, resonators, circular waveguide discontinuities). Includes QW-Editor and QW-Simulator, working in a vector 2 D regime

QW-Editor A graphical editor for definition of geometry, media, I/O parameters and postprocessing. It QW-Editor A graphical editor for definition of geometry, media, I/O parameters and postprocessing. It comprises a library of parameterised objects and a capability for generating further objects and libraries. Conversion to and from CAD formats is also facilitated.

QW-Simulator A unique, conformal FDTD solver. Its output data include multi-modal, multi-port S-matrices, radiation QW-Simulator A unique, conformal FDTD solver. Its output data include multi-modal, multi-port S-matrices, radiation and scattering patterns, pattern of field, dissipated power, time-domain reflectometry etc.

QProny An optional signal postprocessing module, which speeds up the extraction of S-parameters and/or QProny An optional signal postprocessing module, which speeds up the extraction of S-parameters and/or complex eigenvalues of high-Q circuits. Co-authored by Prof. M. Mrozowski

QW-Optimiser An example optimiser compatible with QW-3 D and QW-V 2 D. Currently works QW-Optimiser An example optimiser compatible with QW-3 D and QW-V 2 D. Currently works with goal functions based on S-parameters or radiation patterns. Co-authored by Dr. P. Miazga

QW-Multi. Sim A package of four multithread implementations of QW-Simulator faster execution on multi-processor QW-Multi. Sim A package of four multithread implementations of QW-Simulator faster execution on multi-processor PCs. Also allows running two instances of QW-Simulator on a two-processor PC.

QW-BHM A specialised module for microwave heating applications. It automatically modifies enthalpy- or temperature QW-BHM A specialised module for microwave heating applications. It automatically modifies enthalpy- or temperature dependent media parameters as a function of dissipated power.

QWCX A specialised 2 D package for the analysis and design of coaxial connectors. QWCX A specialised 2 D package for the analysis and design of coaxial connectors. A full-wave approach is utilised, allowing for such effects as tapers, gaps in inner connector, re-entrant cavities.

Licence Conditions Quick. Wave software can be executed on PC computers with Windows 95 Licence Conditions Quick. Wave software can be executed on PC computers with Windows 95 Windows 98, Windows NT, Windows 2000, Windows XP. Multi. Sim requires Windows NT or Windows 2000

Licensing Schemes for Quick. Wave Products • Permanent licences - one-computer stand-alone licence - Licensing Schemes for Quick. Wave Products • Permanent licences - one-computer stand-alone licence - floating network licence • Temporary licences • Free pre-sale benchmarks • Free post-course trials

Permanent Licences Allow the software to be used for unlimited period of time. One Permanent Licences Allow the software to be used for unlimited period of time. One year of user support and version upgrades (at least one a year) are included in the price. After the first year, further support and upgrades available at 15% of original licence price.

Temporary Licence Offered for the 6 months’ evaluation period at 25% of the permanent Temporary Licence Offered for the 6 months’ evaluation period at 25% of the permanent licence price. Support during the licence validity. Can be upgraded to permanent licence at any time during validity, for the remaining 75% of the full price.

Free Pre-Sale Benchmarks Can be performed by QWED staff comprising professionals experienced in various Free Pre-Sale Benchmarks Can be performed by QWED staff comprising professionals experienced in various domains of microwave and millimetre-wave engineering, electromagnetic modelling, and software application. Reports contain results, comments and suggestions as to the problems. The parameterised macros will be delivered at no extra charge with a permanent licence sale.

Free Post-Course Trials Offered to potential customers who have participated in a short course Free Post-Course Trials Offered to potential customers who have participated in a short course on Quick. Wave application, which QWED arranges from time to time at various locations. An interested customer may order a special course at his premises, dedicated to his applications.

Licence Protection Quick. Wave software is protected by a hardware key in which software Licence Protection Quick. Wave software is protected by a hardware key in which software configuration and licence validity are encoded. The key can be remotely upgraded.

Our Sales Orientation: 20 Countries on 5 Continents Our Sales Orientation: 20 Countries on 5 Continents

Our Sales Orientation Our Sales Orientation

Our Marketing Strategy Annual participation in IEEE International Microwave Symposium and Exhibition QWED booth Our Marketing Strategy Annual participation in IEEE International Microwave Symposium and Exhibition QWED booth at MTT-S in Seattle: #569

Our Marketing Strategy Internet Our Marketing Strategy Internet

Our Marketing Strategy Scientific Publications and Conferences Our Marketing Strategy Scientific Publications and Conferences

QWED’s Prizes 1998 The European Information Technology Prize From European Commission and Euro-Case QWED’s Prizes 1998 The European Information Technology Prize From European Commission and Euro-Case

QWED’s Prizes 1999 The Prime Minister of Poland Award QWED’s Prizes 1999 The Prime Minister of Poland Award

QWED’s Prizes 2000 Master of Technology Award From Polish Federation of Engineering Associations QWED’s Prizes 2000 Master of Technology Award From Polish Federation of Engineering Associations

QWED’s Prizes 2000 Proton Award From State Committee for Scientific Research and Proton TV QWED’s Prizes 2000 Proton Award From State Committee for Scientific Research and Proton TV programme

QWED’s Prizes 2001 Leader in Software Export From Polish Software Market Association QWED’s Prizes 2001 Leader in Software Export From Polish Software Market Association

QWED’s Prizes 2006 Leader in Software Export 2005 From Polish Software Market Association QWED’s Prizes 2006 Leader in Software Export 2005 From Polish Software Market Association

QWED’s Certificate 2007 The Certificate from Military Center for Standardization, Quality Assurance and Codification QWED’s Certificate 2007 The Certificate from Military Center for Standardization, Quality Assurance and Codification

Joint Consulting Activities In collaboration with the Institute of Radioelectronics: • designing high-power sources Joint Consulting Activities In collaboration with the Institute of Radioelectronics: • designing high-power sources of high frequency stability • measuring material properties in wide range of frequencies and loss tangents.

Joint Consulting Activities Split post dielectric resonator (5. 6 GHz) In collaboration with Prof. Joint Consulting Activities Split post dielectric resonator (5. 6 GHz) In collaboration with Prof. Jerzy Krupka, resonators for measurements of: • complex permittivity, • complex permeability • surface resistance at microwave frequencies. Re-entrant cavity (800 MHz)

We will be happy to answer your questions or enquiries. You may reach us We will be happy to answer your questions or enquiries. You may reach us at [email protected] com. pl

Thank you for your attention and interest in QWED Thank you for your attention and interest in QWED