Скачать презентацию UHECRs GRBs Eli Waxman Weizmann Institute ISRAEL Скачать презентацию UHECRs GRBs Eli Waxman Weizmann Institute ISRAEL

23b84d02fa9ecdb3b4a143502312d312.ppt

  • Количество слайдов: 18

UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL

The acceleration challenge v R /G B v 2 R l =R/G G 2 The acceleration challenge v R /G B v 2 R l =R/G G 2 (dt. RF=R/Gc) [Hillas, ARA&A (1984); Waxman 04]

The suspects • Active Galactic Nuclei (steady): G~ few requires L>1047 erg/s Few, brightest The suspects • Active Galactic Nuclei (steady): G~ few requires L>1047 erg/s Few, brightest AGN • Gamma Ray Bursts (transient): G~ 300 requires L>1051 erg/s Average Lg~1052 erg/s

The Suspects losses 1/b [Hillas 84; Arisaka 02] The Suspects losses 1/b [Hillas 84; Arisaka 02]

Comments on “Magnetars” • Newborn Neutron stars (Hypothesis) with: B~1014 G, W~104/sec LEM~1050 erg/s Comments on “Magnetars” • Newborn Neutron stars (Hypothesis) with: B~1014 G, W~104/sec LEM~1050 erg/s for t<1 min. [e. g. Blasi, Epstein, Olinto 00; Arons 02] • Some difficulties: EM wind NS ~1 Msun envelope Wind should penetrate envelope with <10 -12 Msun entrainment Acceleration mechanism: Unknown [Waxman 04]

Gamma-ray Bursts M on ~1 Solar Mass BH Relativistic Outflow G~300 e- acceleration in Gamma-ray Bursts M on ~1 Solar Mass BH Relativistic Outflow G~300 e- acceleration in Collisionless shocks Me. V g’s: Lg~1052 erg/s UHE- p Acceleration e Synchrotron [Piran, Phys. Rep. 99; Meszaros, ARA&A 02; Waxman, Lec. Notes Phys. 598 (2003). ] X-ray, UV Radio

Proton/electron acceleration: ‘ 95 Protons Electrons • Acceleration/expansion: • Me. V g’s: • Synchrotron Proton/electron acceleration: ‘ 95 Protons Electrons • Acceleration/expansion: • Me. V g’s: • Synchrotron losses: • Optical depth: • Particle spectrum: • g spectrum: • p energy production: • g energy production [Waxman 95, PRL 75, 386; Ap. J 452, L 1; Note: Constraints independent of details of acceleratiomn model (e. g. Gialis & Pelletier 04)]

: 1997 Beppo. SAX (GRB afterglows( • Detection of (predicted) X-ray, Optical & Radio : 1997 Beppo. SAX (GRB afterglows( • Detection of (predicted) X-ray, Optical & Radio “afterglow” • Identification of “host” galaxies, ~2 [e. g. Meszaros, ARA&A 02] • Detailed tests of the model Size measurements [scintillation, VLBI, sub-rel. ] [Waxman, Kulkarni & Frail 98; Taylor, Frail, Berger & Kulkarni 04; Frail, Waxman & Kulkarni 00; Berger, Kulkarni & Frail 04] X-ray to radio (synchrotron) spectra [e. g. 970508, Wijers & Galama 98]

Afterglow: UHECR implications • Lg=1051 erg/s -> Lg=1052 erg/s • Early optical afterglow: u. Afterglow: UHECR implications • Lg=1051 erg/s -> Lg=1052 erg/s • Early optical afterglow: u. B/ue~1, G~102. 5 • Revised rates, energy 10/Gpc 3 yr -> 0. 5/Gpc 3 yr Eg=1052 erg -> Eg=1053. 5 erg [Zhang, Kobayashi, Meszaros 03; Soderberg, Ramirez-Ruiz 03] [Schmidt 01; Guetta, Piran, Waxman 03]

Proton/electron acceleration Protons • Acceleration/expansion: 0. 02 Electrons • Me. V g’s: 52 • Proton/electron acceleration Protons • Acceleration/expansion: 0. 02 Electrons • Me. V g’s: 52 • Synchrotron losses: • Optical depth: • Particle spectrum: • g spectrum: • p energy production: • g energy production [Waxman 95] [Waxman 04] Afterglow

UHECR generation • Galactic heavy nuclei ~1019 e. V X-Galactic protons [Watson 91, Nagano UHECR generation • Galactic heavy nuclei ~1019 e. V X-Galactic protons [Watson 91, Nagano & Watson 00] • X-Galactic protons Generation spectrum & rate (z evolution follows SFR): • <1019 e. V Galactic heavy nuclei Fly’s Eye fit: JG~E-3. 50 [Waxman 95; Bahcall & Waxman 03]

Model vs. Data Ruled out at 5 s [Bahcall & Waxman 03] Model vs. Data Ruled out at 5 s [Bahcall & Waxman 03]

“GZK sphere” • AGN, Radio-galaxies • GRBs : g p • For RGRB(z=0)~0. 5/Gpc “GZK sphere” • AGN, Radio-galaxies • GRBs : g p • For RGRB(z=0)~0. 5/Gpc 3 yr D l. B • Prediction: [Waxman 95; Miralda-Escude & Waxman 96, Waxman 03]

GRB Model Predictions • >3 x 1020 e. V: Few, narrow spectrum sources; Fluctuations GRB Model Predictions • >3 x 1020 e. V: Few, narrow spectrum sources; Fluctuations (no homogeneous GZK). • Auger [Watson 91, Cronin 93] [Miralda-Escude & Waxman 96] • AGASA multipletsstatistical significance? [Teshima 03; Finley & Westerhoff 04]

 • “Generic” GRB n’s • • Weak dependence on model parameters [Waxman & • “Generic” GRB n’s • • Weak dependence on model parameters [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez. Muniz & F. Halzen 99; Guetta, Spada & Waxman 01; Guetta, Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

Summary • GRBs >1019 e. V protons (acceleration, rate) Predictions 103 km 2 area Summary • GRBs >1019 e. V protons (acceleration, rate) Predictions 103 km 2 area detectors experiments: Hi. Res, Auger, T. A. , EUSO/OWL • GRBs 100 Te. V n’s Flux 1 Gton detectors Experiments: Baikal, AMANDA Ice. Cube, Antares, Nestor, NEMO • n detection GRBs: CR puzzle, GRB progenitors & physics n physics: nm nt t appearance Lorentz Inv. (10 -16), Weak equivalence principle (10 -6)

Direct size measurement: Scintillation q h d l dne qd>l Diffractive scintillation • Finite Direct size measurement: Scintillation q h d l dne qd>l Diffractive scintillation • Finite size, cosmological source: hcrit. ~few x 1017 cm [Frail, Waxman & Kulkarni 00]

“Cannon balls” • Proper motion: D&D 2003: >1. 4 mas for 030329 Obs. : “Cannon balls” • Proper motion: D&D 2003: >1. 4 mas for 030329 Obs. : 0. 1+-0. 1 • Inconsistent with scintillation suppression [ Dado, Dar & De Rujula 02]