Скачать презентацию Solar Domestic Hot Water Patrick Patterson July 16 Скачать презентацию Solar Domestic Hot Water Patrick Patterson July 16

bc5650fd0c69d749eaa5e638db129d47.ppt

  • Количество слайдов: 32

Solar Domestic Hot Water Patrick Patterson July 16, 2003 Solar Domestic Hot Water Patrick Patterson July 16, 2003

Topics Overview • Types of heating • Financial analysis & • Hardware • Recommendations Topics Overview • Types of heating • Financial analysis & • Hardware • Recommendations • System applications • Case studies systems Economics

Four Types of Heating Systems Open Loop System Active System Closed Loop System Passive Four Types of Heating Systems Open Loop System Active System Closed Loop System Passive System

Open & Closed Loop Design Characteristics Open Loop System Closed Loop System • Solar Open & Closed Loop Design Characteristics Open Loop System Closed Loop System • Solar heated water flows Antifreeze (glycol) is • directly into existing water used along with a heater, or secondary storage exchanger to transfer heat tank • More common in • Used in household and pool household applications • Liquid flowing across • Water flowing across panels does not mix with is what comes out of the faucet water faucet

Open Loop System Comparison üAdvantages • Disadvantages • Less expensive type of system, no Open Loop System Comparison üAdvantages • Disadvantages • Less expensive type of system, no heat exchanger implementation • System can freeze in cold climates • Easier to interface with current system • Pipes do not completely drain when not in use • Good efficiency • Repair is expensive! • Good for warm climates where freezing is unlikely • May be more difficult to fit to existing system • System can overheat

Closed Loop System Comparison ü Advantages • Disadvantages • Will not freeze • Must Closed Loop System Comparison ü Advantages • Disadvantages • Will not freeze • Must purchase antifreeze • Will not overheat • Must implement heat exchanger • Good for cooler climates where freezing is likely • Pipes drain when system it not working • May be more difficult to fit to existing system

Passive Systems • Is very heavy • Ugly to look at • Will not Passive Systems • Is very heavy • Ugly to look at • Will not freeze • Utilizes thermosyphon • Not very efficient—especially in low intensity sunlight

Open Loop System Household Application Solar heated water runs directly into a secondary storage Open Loop System Household Application Solar heated water runs directly into a secondary storage tank, or an existing hot water heater.

Open Loop System Swimming Pool Application Open loop drain back systems pumps pool water Open Loop System Swimming Pool Application Open loop drain back systems pumps pool water up to panels and gravity brings it back down

Closed Loop System Household Application Closed loop system in which glycol is heated and Closed Loop System Household Application Closed loop system in which glycol is heated and circulated through a heat exchanger to transfer heat to water

Closed Loop System Pool Application Closed loop systems prevent chemically saturated pool water from Closed Loop System Pool Application Closed loop systems prevent chemically saturated pool water from coming in contact with solar panels.

SDHW Hardware Components ü Heat Exchanger ü Glycol (antifreeze) ü Solar Panels ü Circulation SDHW Hardware Components ü Heat Exchanger ü Glycol (antifreeze) ü Solar Panels ü Circulation pump ü Differential Controller ü Pipes & Sensors

Heat Exchangers • Used to transfer heat from exchange medium to water Heat Exchangers • Used to transfer heat from exchange medium to water

Solar Panels http: //www. vascosolar. com Solar Panels http: //www. vascosolar. com

Solar Panels Futuristic looking Cold day in Vermont Solar Panels Futuristic looking Cold day in Vermont

Differential Controllers & Sensors • Differential Controllers allow flow of solar heated water into Differential Controllers & Sensors • Differential Controllers allow flow of solar heated water into storage tank if temperature differential is within a specified range. • Sensors relay water temperature data to controller which determines if solar heated water should be circulated to raise water temperature. Differential Controller Bolt-on sensor High temp. differential controller Screw-in sensor

Glycol (Antifreeze) ü Make sure your antifreeze has corrosion inhibitors! ü Unless you wish Glycol (Antifreeze) ü Make sure your antifreeze has corrosion inhibitors! ü Unless you wish to shorten the life of your system.

Circulation Pumps Industrial size pump Residential pumps • Pumps circulate water through solar panels. Circulation Pumps Industrial size pump Residential pumps • Pumps circulate water through solar panels. They are activated by the differential controller when it senses too large a differential between hot water supply and water coming from panels. Two types of pumps: AC & DC

Pipes • Pipes should be well insulated to maximize efficiency • Preferably made from Pipes • Pipes should be well insulated to maximize efficiency • Preferably made from copper

SDHW Economics • 30% of household energy consumption goes to heating water • Solar SDHW Economics • 30% of household energy consumption goes to heating water • Solar water heaters pay for themselves in 3 -10 years! (depending on usage) • Total cost over product life is less than all other water heating systems • Oregon offers a tax credit of up $1, 500 for residential solar energy projects. • Additional property value resulting from installation of solar equipment is exempt from property taxes under Oregon state law until December 31, 2012 http: //www. energy. state. or. us

Calculation of Hot Water Costs • (gallons/wk) x (52 wks. /yr. ) = gallons/yr. Calculation of Hot Water Costs • (gallons/wk) x (52 wks. /yr. ) = gallons/yr. • (69. 5) x (52) = 3, 614 • (gallons/yr. ) x (8. 34 lbs. /gal. ) = lbs/yr. • (3, 614) x (8. 34) = 30, 140. 8 lbs/yr. • (lbs/yr. ) x ((temp. rise x (1 btu/of/lb h 20)) = btus/yr • (30, 140) x ((120 -50) * 1) http: //cru. cahe. wsu. edu = 2, 109, 853. 2

Calculation of Hot Water Costs • (btus/yr) / (tank eff. = 0. 85) = Calculation of Hot Water Costs • (btus/yr) / (tank eff. = 0. 85) = total btus/yr. (required) • (2, 109, 853. 2) / (0. 85) = 2, 482, 180 • (Total Btus/yr) / (3413 Btus/k. Wh) = total k. Wh/yr. (required) • (2, 482, 180) / (3413) = 727. 1 (2 k. Wh/day) • (Total k. Wh/yr. ) x (Cost/k. Wh) = total cost/yr. (electric) • (727. 1) x (0. 09) = $65. 44 = $ 5. 45/month http: //cru. cahe. wsu. edu

How Much Do You Spend? Compiled by the Oregon State University Extension Program June How Much Do You Spend? Compiled by the Oregon State University Extension Program June 1997.

How Much Will SDHW Help? • (collector size) x (agsr. ) = energy received How Much Will SDHW Help? • (collector size) x (agsr. ) = energy received • (energy received) x (efficiency) = kwh/day • (required kwh/day) – (recvd. Kwh/day)=savings • (4’x 8’ or 2. 97 m 2) x (5. 6 kwh/m 2) = 16. 6 k. Wh/day potential contribution to H 20 heating needs.

How Much Will You Save? • http: //www. infinitepower. org/calc_waterheating. htm How Much Will You Save? • http: //www. infinitepower. org/calc_waterheating. htm

Domestic Hot Water Heating Statistics Energy losses in electric water heaters Energy losses in Domestic Hot Water Heating Statistics Energy losses in electric water heaters Energy losses in gas water heaters

Itemized Part List http: //www. solardev. com Itemized Part List http: //www. solardev. com

Recommended System http: //www. solar-components. com/actvdhw. htm Recommended System http: //www. solar-components. com/actvdhw. htm

Case Study #1 Joyce & Andy Melrose Park, PA. Two 3’x 7’ roof mounted Case Study #1 Joyce & Andy Melrose Park, PA. Two 3’x 7’ roof mounted drain-down solar hot water collectors provide hot water on sunny days. On cloudy days a gas hot water heater is available to assist if needed. A water submeter measures all domestic hot water. A gas submeter measures all gas used by the Mor. Flo water heater

Case Study #2 Gaithersburg, MD. This 400 square foot array heats an indoor swimming Case Study #2 Gaithersburg, MD. This 400 square foot array heats an indoor swimming pool in Gaithersburg saving the owner substantially on her propane bill each month. The array was originally to be located on the roof of the pool house, but we chose to locate it on top of a 50 foot storage shed about 170 feet from the house. Pipes were trenched from the array to the pool pump room where the solar heat is transferred to the pool water via heat exchanger.

Conclusion & Closing Thoughts Ø Solar heating is efficient Ø Pays for itself in Conclusion & Closing Thoughts Ø Solar heating is efficient Ø Pays for itself in less time than any PV systems Ø Tax incentives are more appealing PV systems Ø Carefully consider your times of hot water consumption

Sources • • • • http: //www. energy. state. or. us/renew/Solar/Support. htm http: //www. Sources • • • • http: //www. energy. state. or. us/renew/Solar/Support. htm http: //www. w-esco. com/cases. html http: //www. aaasolar. com/aaapics. htm http: //www. solarexpert. com/dhw-heat. html http: //www. nrel. gov http: //www. scsolar. com/Solar_Hot_Water_and_Pool_Heating. htm http: //www. jc-solarhomes. com/solar_water_heating. htm http: //www. rerc-vt. org/shw_investing. htm http: //www. eere. energy. gov/erec/factsheets/solrwatr. pdf http: //www. solardev. com/poolmanual. php http: //cru. cahe. wsu. edu/CEPublications/eb 1833 e. html http: //www. eere. energy. gov/buildings/components/waterheating/solarhot. cfm Home Power Issue #94 April/May 2003 • • • http: //www. geocities. com/n 3 sjh/joel/ http: //www. solardev. com/ http: //www. lightheat. com/thermomax. htm http: //www. vascosolar. com/hotwater. html http: //www. eere. energy. gov/femp/prodtech/rightcol. html http: //www. infinitepower. org/calc_waterheating. htm http: //www. eere. energy. gov/power/consumer/hc_calculations. html http: //www. thermomax. com/Solar%20 Hot%20 Water. htm http: //www. phillysolar. org/pv_status 3. htm http: //www. cwsenergy. com/projects. html http: //sunstar-solutions. com/ASLwaterheaters. htm http: //hem. dis. anl. gov/eehem/95/950103. html