Скачать презентацию Quantum computers quantum computations H Gomonay National Technical Скачать презентацию Quantum computers quantum computations H Gomonay National Technical

QC.ppt

  • Количество слайдов: 44

Quantum computers, quantum computations H. Gomonay National Technical University of Ukraine JGU, Mainz, Germany Quantum computers, quantum computations H. Gomonay National Technical University of Ukraine JGU, Mainz, Germany

Take-home message The quest for a quantum computer reminds me of the endless quests Take-home message The quest for a quantum computer reminds me of the endless quests for WIMPs, strings, sparticles, magnetic monopoles, etc. Succeed they or not, they bring to development of new knowledges and technologies, push the most talented people into science and keep fun from research. Same as it ever was.

Motivation Meters Moore’s law Nanometers 40 years Electronic lamp Microprocessor 80486 dx 2 Motivation Meters Moore’s law Nanometers 40 years Electronic lamp Microprocessor 80486 dx 2

Outline History Principles of quantum computation Di Vincenzo criteria Superconducting qubit Some algorithms Architecture Outline History Principles of quantum computation Di Vincenzo criteria Superconducting qubit Some algorithms Architecture Challenges and problems

History in facts 1935 – A. Einstein doubts in adequacy of 1935 quantum mechanics History in facts 1935 – A. Einstein doubts in adequacy of 1935 quantum mechanics & introduces entangled states 1982 – R. Feynman predicts possibility 1982 of quantum computations 2007 – D-Wave Systems presents 16 qubit quantum processor Orion

2012 – S. Haroche & D. J. Wineland winn 2012 Nobel prize for ground-breaking 2012 – S. Haroche & D. J. Wineland winn 2012 Nobel prize for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems" 2015 – Google tests the D-Wave 2 X quantum annealer, ~1000 qb

History in diagrams Classical vs quantum: speed up History in diagrams Classical vs quantum: speed up

What is beyond? Down to small size = forward to quantum physics What is beyond? Down to small size = forward to quantum physics

Quantum Mechanics: Quantum Information Quantum Mechanics: Quantum Information

What is all about or new applications of quantum physics “Hacking” crypto Keeping secrets What is all about or new applications of quantum physics “Hacking” crypto Keeping secrets Data search speed up Bioinformatics Outer space opening Fundamental problems Factorization of 256 -digit number: Classic – 2 N 1070 years Classic Quantum – N 2 ~ 10 seconds Quantum

What is QC? D-Wave QC is the physical device that utilizes quantum properties for What is QC? D-Wave QC is the physical device that utilizes quantum properties for information processing

Classical Quantum Classical Software Input-output Interface Algorithms Boolean logic (Principle of excluded middle) Quantum Classical Quantum Classical Software Input-output Interface Algorithms Boolean logic (Principle of excluded middle) Quantum System codes Physical basis Quantum logic (Superposition & hidden symmetry) Hardware

Algorithm complexity Input Easy Classic C Quantum C Hard Algorithm complexity Input Easy Classic C Quantum C Hard

Qubit = Quantum bit Bit Qubit Qubit = Quantum bit Bit Qubit

Entangled states (EPR) 1 B 0 B B AB A 0 A 1 A Entangled states (EPR) 1 B 0 B B AB A 0 A 1 A

Interference – Schrödinger's Cat U 0 + 1 Interference – Schrödinger's Cat U 0 + 1

Quantum parallelelism Quantum parallelelism

Parallel quantum algorithm Parallel quantum algorithm

Universal gate set Operation Gates: NOT Hadamar XOR Hadam Universal gate set Operation Gates: NOT Hadamar XOR Hadam

Principles of quantum computation Computation: unitary evolution Readout: measurement Avoiding decoherence Principles of quantum computation Computation: unitary evolution Readout: measurement Avoiding decoherence

Di Vincenzo criteria Selectivity (addressing each qubit) High sensitivity = Good control Large decoherence Di Vincenzo criteria Selectivity (addressing each qubit) High sensitivity = Good control Large decoherence time ( decoh/ gate >104) Readout Measurability Scalability (>100 qubits)

Quantum computer by Cirac & Zoller (1995) Quantum computer by Cirac & Zoller (1995)

Ions in trap Ions in trap

Qubit: micro or macro? Measurement duration: Limitations: Energy splitting: Qubit = 1 electron spin: Qubit: micro or macro? Measurement duration: Limitations: Energy splitting: Qubit = 1 electron spin: k~10 -3 – 10 -7 Measured Min splitting ~10 4 T Min field Impossible! We need macrospin! Impossible macrospin

Superconductors: macroatoms Qubit: charge or phase Control: magnetic flux Readout: SQUID, SET T=10 m. Superconductors: macroatoms Qubit: charge or phase Control: magnetic flux Readout: SQUID, SET T=10 m. K 1 qubit gate — ns Qubit size 1 mcm Josephson junction

Superconducting qubit: overcoming decoherence (Shnyrkov, Mooji, D-wave Systems) Shnyrkov et al, 2007 decoh s, Superconducting qubit: overcoming decoherence (Shnyrkov, Mooji, D-wave Systems) Shnyrkov et al, 2007 decoh s, T 1 K

Flux qubit: theory Flux qubit: theory

…& experiment qubi t gate …& experiment qubi t gate

V-I SQUID (V. Shnyrkov, G. Tsoi, 1990) classic quantum V-I SQUID (V. Shnyrkov, G. Tsoi, 1990) classic quantum

Quantum coherence Sc. S-контакт, m= 26, C= 8 p. F, b. L= 3, 83 Quantum coherence Sc. S-контакт, m= 26, C= 8 p. F, b. L= 3, 83

Single-qubit gate Single-qubit gate

Rabi oscillations Experimental results for the charge-phase qubit placed in the region of the Rabi oscillations Experimental results for the charge-phase qubit placed in the region of the maximum electric field at continuous microwave irradiation with w 0=7. 27 GHz. Set of the curves of the voltage-current phase shift T (Fe/F 0) in the tank circuit. (V. Shnyrkov, D. Born, A. Soroka, W. Krech 2003)

2 -qubit gate (Di. Vincenzo et al, IBM qubit) 2 -qubit gate (Di. Vincenzo et al, IBM qubit)

Find the period: Shor’s algorithm Find the period: Shor’s algorithm

Hidden symmetry ay=0 - amplification; ay=1 - depression Hidden symmetry ay=0 - amplification; ay=1 - depression

Database search Classic algorithm : 2 n =N Quantum algorithm: 2 n/2 = N Database search Classic algorithm : 2 n =N Quantum algorithm: 2 n/2 = N Unsorted database Merlin

Grover’ algorithm Input Flip (Merlin) Mirroring Grover’ algorithm Input Flip (Merlin) Mirroring

Grover’ algorithm: experiment Grover’ algorithm: experiment

Architecture 4 -level system QIR=Quantum Intermediate Representation QASM=Quantum Assembly Language QPOL=Quantum Physical Operations Language Architecture 4 -level system QIR=Quantum Intermediate Representation QASM=Quantum Assembly Language QPOL=Quantum Physical Operations Language QCC=Quantum Computer Compiler

Quantum computer: challenges Decoherence (state instability) Scaling (few number of qubits) Input-output control Extreme Quantum computer: challenges Decoherence (state instability) Scaling (few number of qubits) Input-output control Extreme conditions (T=10 m. K, …) New math algorithms development Consumer friendly implementation Weak measurement

Quantum abyss Есть Надо ~5 # кубитов >1000 <100 # операций >109 Шум Технологии Quantum abyss Есть Надо ~5 # кубитов >1000 <100 # операций >109 Шум Технологии ? Ошибки Алгоритмы 41

When, Where, Who & ho. W? 2 qb — 1999, 7 qb — 2001, When, Where, Who & ho. W? 2 qb — 1999, 7 qb — 2001, 16 qb — 2007, NP — 2012, 1000 qb — 2015, on-table -20 xx? ~ 1000 experimental groups over the world Physics, math, computer science, engineering?

Alumni Sergii Strelchuk Vadym Kliuchnikov Junior Research Fellow @ Centre for Quantum Information and Alumni Sergii Strelchuk Vadym Kliuchnikov Junior Research Fellow @ Centre for Quantum Information and Foundations, UC http: //www. qi. damtp. cam. ac. uk/node/72 Post doc researcher @ Microsoft Research http: //research. microsoft. com/enus/people/vadym/

QUANTUM COMPUTING JOIN THE TEAM! QUANTUM COMPUTING JOIN THE TEAM!