Презентация integral ta yogo zastosuvannya new

Скачать презентацию  integral ta yogo zastosuvannya new Скачать презентацию integral ta yogo zastosuvannya new

integral_ta_yogo_zastosuvannya_new.ppt

  • Размер: 608.5 Кб
  • Количество слайдов: 21

Описание презентации Презентация integral ta yogo zastosuvannya new по слайдам

Інтеграл та його застосування Алгебра і початки аналізу, 11 клас підготував учитель математики Колодистенської ЗОШ ІІнтеграл та його застосування Алгебра і початки аналізу, 11 клас підготував учитель математики Колодистенської ЗОШ І – ІІІ ступенів Нетудихата Володимир Ілліч, спеціаліст вищої категорії, учитель-методист 2013 рік

1. Поняття криволінійної трапеції. 2.  Площа криволінійної трапеції.  Формула Ньютона-Лейбніца. 3. Визначений інтеграл. 4.1. Поняття криволінійної трапеції. 2. Площа криволінійної трапеції. Формула Ньютона-Лейбніца. 3. Визначений інтеграл. 4. Застосування визначеного інтеграла до обчислення: а) площі криволінійної трапеції; б) площі фігури, обмеженої лініями; в) об’ємів многогранників (піраміди), об’ємів тіл обертання; г) об’ємів тіла, утвореного обертанням криволі- нійної трапеції ; ґ) шляху за відомим законом зміни швидкості. Зміст

КРИВОЛІНІЙНА ТРАПЕЦІЯ Розглянемо функцію , яка є неперервною на відрізку    і набуває наКРИВОЛІНІЙНА ТРАПЕЦІЯ Розглянемо функцію , яка є неперервною на відрізку і набуває на цьому проміжку невід’ємних значень. Означення: Фігуру, обмежену графіком функції і прямими називають криволінійною трапецією. ba; f f, , , 0 bxaxy

ПРИКЛАДИ КРИВОЛІНІЙНИХ ТРАПЕЦІЙ ФІГУРИ, ЩО НЕ Є КРИВОЛІНІЙНИМИ ТРАПЕЦІЯМИ Обґрунтувати чому. ПРИКЛАДИ КРИВОЛІНІЙНИХ ТРАПЕЦІЙ ФІГУРИ, ЩО НЕ Є КРИВОЛІНІЙНИМИ ТРАПЕЦІЯМИ Обґрунтувати чому.

ПЛОЩА КРИВОЛІНІЙНОЇ ТРАПЕЦІЇ S  – площа криволінійної трапеції ; F (x) – будь-яка первісна функціїПЛОЩА КРИВОЛІНІЙНОЇ ТРАПЕЦІЇ S – площа криволінійної трапеції ; F (x) – будь-яка первісна функції f(x) на відрізку [ a; b ]. Площу S криволінійної трапеції, обмеженої графіком функції y=f(x ) і прямими y=0, x=a i x=b (a<b) , можна обчислити за формулою S = F(b) – F(a)

ЗАДАЧА: Знайти площу фігури, обмеженої лініями  y = cos x,  y = 0, xЗАДАЧА: Знайти площу фігури, обмеженої лініями y = cos x, y = 0, x = Розв’язання Для y = cos x одна з первісних є F(x) = sin x. Тоді Відповідь: S = 1. . 2 1010 sinsin)0()(22 FFS ЗАДАЧА: Знайти площу фігури, обмеженої лініями . 0, 4 2 yxy Розв’язання Графік функції f перетинає пряму y = 0 у точках. Одна з первісних функції f на відрізку [-2; 2] є функція . Тоді Або, враховуючи симетричність фігури, маємо Відповідь: 22 21 xix 3 3 4)( xxx. F 32 10 31 516 316 16 38 8) 3 8 8() 38 8()2()2( FFS. 32 10 31 52) 32 28(2) 38 8(2))0()2((2 FFS

ВИЗНАЧЕНИЙ ІНТЕГРАЛ Означення.  Нехай  F – первісна функції f  на проміжку  IВИЗНАЧЕНИЙ ІНТЕГРАЛ Означення. Нехай F – первісна функції f на проміжку I , числа a і b належать проміжку I , де a<b. Різницю F(b)-F(a) називають визначеним інтегралом функції f на відрізку [ a; b ]. b a a. Fb. Fdxxf )()()( Це і є формула Ньютона-Лейбніца Ісаак Ньютон (1643 -1727) Готфрід Лейбніц (164 6 -17 16 )

ІСТОРИЧНА ДОВІДКА “ Розумом він перевершив рід людський ” – ці слова написані нащадками про видатногоІСТОРИЧНА ДОВІДКА “ Розумом він перевершив рід людський ” – ці слова написані нащадками про видатного англійського науковця, фізика і математика Ісаака Ньютона. Поряд з Ісааком Ньютоном стоїть ім’я німецького вченого Готфріда Лейбніца , який залишив після себе наукові праці у філософії, математиці, юриспруденції, логіці, дипломатії, політології. Ісаак Ньютон і Готфрід Лейбніц завершили теорію диференціального та інтегрального числення, що дало можливість швидко і просто розв’язувати задачі, які раніше вважалися неприступними. Завдяки зручній загальній теорії можна швидко будувати дотичні до найскладніших кривих, знаходити найбільші та найменші значення функції, обчислювати площі різноманітних фігур, об’єми просторових тіл, розв’язувати різні фізичні задачі.

АЛГОРИТМ ЗНАХОДЖЕННЯ ІНТЕГРАЛА ЗА ФОРМУЛОЮ НЬЮТОНА-ЛЕЙБНІЦА 1) знайти будь-яку первісну F  функції f  наАЛГОРИТМ ЗНАХОДЖЕННЯ ІНТЕГРАЛА ЗА ФОРМУЛОЮ НЬЮТОНА-ЛЕЙБНІЦА 1) знайти будь-яку первісну F функції f на відрізку [ a; b ] ; 2) обчислити значення первісної F у точках x = b та x = a ; 3) знайти різницю F(b) – F(a). Приклад 1. Обчислити інтеграл: . 2 2 0) 4 cos( 2 coscossin 2 4 xxdx

Приклад 2.  Приклад 3.  Знайти площу криволінійної трапеції, обмеженої лініями  Відповідь:  4.Приклад 2. Приклад 3. Знайти площу криволінійної трапеції, обмеженої лініями Відповідь: 4. . 3 1 5 3 16 44 3 24 0 4 02 3 1 2 14 0 xx x dxxdxx. 0, , 1, 4 yexx x y. 4041 ln 4 ln 4 4 11 exdx x S ee

 Приклад 4.  Знаходження площі фігури,  обмеженої лініями y=x 2 , y=2 x. Розв'язання Приклад 4. Знаходження площі фігури, обмеженої лініями y=x 2 , y=2 x. Розв’язання Відповідь: . 2 032 2 ) 322()2( xx dxxx. S 32 24 38 4 32 2) 3( 3 22 03 2 x x

ЗАСТОСУВАННЯ ВИЗНАЧЕНОГО ІНТЕГРАЛА ДО ОБЧИСЛЕННЯ ОБ ’ ЄМІВ ТІЛ 1. Обчислення об'єму піраміди з площею основиЗАСТОСУВАННЯ ВИЗНАЧЕНОГО ІНТЕГРАЛА ДО ОБЧИСЛЕННЯ ОБ ’ ЄМІВ ТІЛ 1. Обчислення об’єму піраміди з площею основи S і висотою H. Вісь Ox перпендикулярна до основи піраміди. S(x) – площа перерізу піраміди на відстані x від вершини, якщо піраміду перерізати площиною, паралельною основі S.

За властивістю площ подібних фігур: ; )( 2 H x S x. S ; )( 22За властивістю площ подібних фігур: ; )( 2 H x S x. S ; )( 22 H Sx x. S H dxx. SV 0 ; )( H H SH H HSx H S dx H S x. V 0 2 3 03 222.

а) кругового циліндра:  S - площа основи циліндра,  H – висота циліндра. ЗАСТОСУВАННЯ ВИЗНАЧЕНОГОа) кругового циліндра: S — площа основи циліндра, H – висота циліндра. ЗАСТОСУВАННЯ ВИЗНАЧЕНОГО ІНТЕГРАЛА ДО ОБЧИСЛЕННЯ ОБ ’ ЄМІВ ТІЛ ОБЕРТАННЯ (ЦИЛІНДРА, КОНУСА, КУЛІ, ЗРІЗАНОГО КОНУСА); )(Sx. S H H H SHSx. Sdxdxx. SV 0 0 0)(

б ) кругового конуса:     - рівняння прямої ОВ x H R yб ) кругового конуса: — рівняння прямої ОВ x H R y x H Rxfxf. BKRKB)(), (, 11 2 2 22 )(x H Rx. S. 3 1 33 2 2 32 0 3 0 2 22 2 2 HR H HRx H Rdxx H RV HH

Об'єм тіла, утвореного обертанням криволі-нійної трапеції, обмеженої лініями , 1 2 xy 0, 1, 0 yxxОб’єм тіла, утвореного обертанням криволі-нійної трапеції, обмеженої лініями , 1 2 xy 0, 1, 0 yxx Розв’язання. Формула обчислення об’єму тіла, утвореного обертанням криволінійної трапеції навколо осі Ох : Відповідь: . b a dxxf. V )(2 1 0 2422 )12()1( dxxxdxx. V 15 28 15 13 1)1 32 51 () 32 5( 1 035 xxx

Застосування визначеного інтеграла у фізиці Обчислення шляху за відомим законом зміни швидкості. Відомо, що шлях Застосування визначеного інтеграла у фізиці Обчислення шляху за відомим законом зміни швидкості. Відомо, що шлях , є первісною для функції , яка виражає закон зміни швидкості. Оскільки шлях, який пройде тіло за інтервал часу від до , є приростом функції , який виражається через інтеграл за формулою Ньютона-Лейбніца, то , за умови, що функція неперервна. Задача. Тіло рухається прямолінійно зі швидкістю, яка змінюється за законом (м/с). Знайти шлях, який пройшло тіло за інтервал часу від с до с. Розв’язання. (м) Відповідь: 10 м. )( tss )(vvt 1 t 2 t )( tss 2 1)(v t t dtts )(vv t 12 vt 11 t 32 t 10))11(39() 22()12( 3 123 1 tt dtts

Застосування інтеграла. Обчислення площі фігури,  обмеженої лініями Обчислення об'єму много-гранни ків (пірамід,  призм) ОбчисленняЗастосування інтеграла. Обчислення площі фігури, обмеженої лініями Обчислення об’єму много-гранни ків (пірамід, призм) Обчислення об’єму тіл обертання Розв’язуван-н я задач еко-номічног о змісту. Розв’язуван-н я багатьох задач фізики. Обчислення площі криволінійної трапеції

Реклама Я – Інтеграл.  Я все можу:  обчислити і площу криволінійної трапеції,  іРеклама Я – Інтеграл. Я все можу: обчислити і площу криволінійної трапеції, і площу фігури, обмеженої лініями. А якої популярності я набув при застосуванні до геометрії! При моїй допомозі просто доводять формули обчислення об’єму многогранників, тіл обертання. Застосовують мене до фізики, де я допомагаю знайти формулу шляху за відомим законом зміни швидкості. А яка краса, коли я обчислюю об’єм тіла обертання криволінійної трапеції навколо координатних осей! Незамінним буду я вам і при вивченні багатьох технічних наук. Дякую Ньютону і Лейбніцу, які в свій час зуміли відкрити мої потенціальні можливості. Тому, юні друзі, дружіть зі мною: я постараюсь і надалі служити математичній науці, яка покликана зміцнювати державу, дбати про добробут її громадян. Ваш помічник і сумлінний трудяга Інтеграл.

Методичні рекомендації Слайди 2 ,  3  використовуються для формування поняття криволінійної трапеції Слайди 4Методичні рекомендації Слайди 2 , 3 використовуються для формування поняття криволінійної трапеції Слайди 4 , 5 доцільно використовувати при вивченні матеріалу про площу криволінійної трапеції Слайд 6 , 7 , 8 використовуються для формування поняття визначеного інтеграла, ознайомлення учнів з формулою Ньютона-Лейбніца Слайди 9 , 1 0 використати при формуванні навичок знаходження площі фігури, обмеженої лініями Слайди 1 1 – 1 4 для формування навичок застосування визначеного інтеграла до виведення формул для обчислення об’єму геометричних тіл. Слайд 1 5 , 1 6 доцільно застосовувати при систематизації та узагальненні знань учнів про визначений інтеграл.

Список використаної літератури: 1.  Мерзляк А. Г.  Алгебра.  11 клас:  підруч. Список використаної літератури: 1. Мерзляк А. Г. Алгебра. 11 клас: підруч. для загальноосвіт. навчальн. закладів: академ. рівень, проф. рівень / А. Г. Мерзляк, Д. А. Номіровський, В. Б. Полонський, М. С. Якір. – Х. : Гімназія, 2011. – 431 с. : іл.




  • Мы удаляем страницу по первому запросу с достаточным набором данных, указывающих на ваше авторство. Мы также можем оставить страницу, явно указав ваше авторство (страницы полезны всем пользователям рунета и не несут цели нарушения авторских прав). Если такой вариант возможен, пожалуйста, укажите об этом.