Скачать презентацию Intelligent Address Management and University Network Security UNC-CAUSE Скачать презентацию Intelligent Address Management and University Network Security UNC-CAUSE

f5ce399944f1f05d8b8b2fe563229c33.ppt

  • Количество слайдов: 30

Intelligent Address Management and University Network Security UNC-CAUSE 2004 Author: Joff Thyer …Thanks to Intelligent Address Management and University Network Security UNC-CAUSE 2004 Author: Joff Thyer …Thanks to many UNCG IT colleagues for their contributions…

Disclaimers! • According to pseudo-random neuron activity, this material may seem like a good Disclaimers! • According to pseudo-random neuron activity, this material may seem like a good idea for the moment. • There a million assumptions contained within of which I will recall maybe 50, 000. • Nirvana always seems just another fingertip reach away…. • I don’t claim to have a handle on the “be all and end all” of network management.

Background – 2004 Enrollment. • • • 11, 497 undergraduate students. 3, 217 graduate Background – 2004 Enrollment. • • • 11, 497 undergraduate students. 3, 217 graduate students. 14, 714 total headcount. Largest freshman class (2, 158) Residence halls at capacity! (approx. 3, 800) Approx. 2000 employees (Faculty/Staff)

Background – Data Network! • End to end Cisco network (IP only) • 700 Background – Data Network! • End to end Cisco network (IP only) • 700 network switches – 200 in residence halls (10 m/bit ports) – 500 in campus general population (100 m/bit ports) • Approx. 25, 000 ports. • Approx. 7000 active MAC addresses – – – 3, 400 workstations in Residence Halls 500 IT managed workstations in public labs Approx. 150 non-IT managed workstations in departmental labs Approx. 1800 faculty/staff workstations Balance is application servers, switches, routers, printers, HVAC devices and other misc. network connected devices.

Background – Data Network! • 50 buildings connected to the campus network via Gigabit Background – Data Network! • 50 buildings connected to the campus network via Gigabit single mode fiber to one of four core routing points. • A collapsed core model! – Predictably the 4 core routers are Catalyst 6500 series • Primary segment (VLAN) deployed per building • VLAN’s deployed per IT managed lab • VLAN’s deployed per IT server groupings (O/S based)

How do we provide IP addressing? • Manual address assignment is clearly not an How do we provide IP addressing? • Manual address assignment is clearly not an option. • Desktop ownership is in the hands of various groups. • Early in our network deployment (years ago) we adopted a policy that all network communications devices must be “registered” with IT.

Mac. Master – Our own SQL database appl. • We grew our own system Mac. Master – Our own SQL database appl. • We grew our own system to manage all computer workstation registrations • Web driven, LDAP authenticated role based users. • Data from SQL tables gets extracted to campus DHCP / DNS servers on a periodic basis. • Reporting ability shows data on: – – – DHCP lease requests Workstation names within individual VLANS (buildings) Address assignments Last seen on network – switch/port attached to. Track a MAC address to a port.

Mac. Master gives us flexibility • You don’t get an IP in the DHCP Mac. Master gives us flexibility • You don’t get an IP in the DHCP table unless you are registered in this database • We can re-address a sub-network if we need with a simple router and database change. • We associate names and locations with workstations. • Effective (though loose) MAC address level access control.

Why give everyone public IP space? • This is a historical issue that we Why give everyone public IP space? • This is a historical issue that we are faced with. • It used to be a promotional point that all workstations on campus were full fledged Internet members. • It effectively promotes fiefdoms within your network!

Security – starting from an open network. • It’s a University – quit now Security – starting from an open network. • It’s a University – quit now while you’re still alive. – Not acceptable folks! Start out by securing things you can reach out and touch. • We have a diverse population but there are some defined groups based on subnet/VLAN segmentation • Some of these groups are: – – Residence Hall buildings IT managed labs IT managed application servers Servers subject to our Enterprise Systems Policy

Initial Steps – Policy • UNCG created an Information Security Committee and asked for Initial Steps – Policy • UNCG created an Information Security Committee and asked for IT staff consulting assistance. • As of this year, we have executive level approval of a new set of policies. • This is of critical importance! You may view our policies at: http: //www. uncg. edu/itp/ (see the New Policies section of the page)

Initial Steps - Technical • Protect your perimeter using router ACL’s. – Common sense Initial Steps - Technical • Protect your perimeter using router ACL’s. – Common sense protections: • Allow only your address block to transit the perimeter – In our case 152. 13. 0. 0/16 • Filter RFC-3330/1918 – Private/Reserved address blocks – (eg: 192. 168. 0. 0/16, 10. 0/8… etc) • Filter protocols/ports used for network management – UDP/TCP 161 and 162 (snmp/snmp trap) – UDP 69 (tftp), UDP 67/68 (dhcp/bootp) – If your Policy statements allow for it: • Filter Netbios/SMB protocols – TCP/UDP ports 445, 135 -139 • Send email traffic only to legitimate email relay hosts

Initial Steps – Technical • Protect your campus from the Residence Hall traffic using Initial Steps – Technical • Protect your campus from the Residence Hall traffic using router ACL’s. – Obtain buy in from Residence Hall staff. • UNCG RESNET – Highest Priority is literally 99% uptime. They are highly supportive of tightening security. – UNCG RESNET security measures to date look a lot like the perimeter filtering • Filtered network based protocols • Allowed email traffic only to legitimate relay hosts • Filtered SMB/Netbios protocols • Deploy a server farm firewall and begin securing servers incrementally. – Deploy intrusion prevention technology in front of servers. – Use router ACL’s to log activity on commonly abused TCP/UDP ports

Security for clients – a la carte? • What do we do with the Security for clients – a la carte? • What do we do with the rest of the general client workstation population? • Let them handle it themselves / workstation centric? – This can work but we really want a “defense in depth” strategy. – Can also depend on how much desktop management control IT professionals have. In most Universities, this control is limited. • We can secure things by VLAN using some policy routing tricks.

Traffic routing by policy? • We could customize traffic routing on a per subnet, Traffic routing by policy? • We could customize traffic routing on a per subnet, or per user basis • What about destinations of communications? – – Primarily driven to two locations – either server farm or Internet. All servers actually live in XX bits of the class B address space. This masks easily as: 152. 13. 0. 0/**censored** One large subnet? No – actually a collection of smaller subnets.

The client perspective • A policy route-map can be placed on any router interface The client perspective • A policy route-map can be placed on any router interface to control traffic destinations. • Our servers nicely fall into one block • The concept for “a la carte” security is to – Route Internet bound traffic through a firewall – Route enterprise server traffic directly to the server address block. – Don’t allow “other” subnets to communicate back to secured client subnets.

152. 13. 55. 0/30 152. 13. 55. 0/30

Router configuration example 1 route-map CLIENT-SECURED permit 10 match ip address CLIENT-SECURED set ip Router configuration example 1 route-map CLIENT-SECURED permit 10 match ip address CLIENT-SECURED set ip next-hop 152. 13. 55. 1 ip access-list extended CLIENT-SECURED deny ip any 152. 13(SERVER BLOCK) deny udp any eq bootps permit ip any

Router configuration example 2 interface Vlan 512 description Forney Building (Secured - Testing - Router configuration example 2 interface Vlan 512 description Forney Building (Secured - Testing - Joff) ip address 152. 13. 145. 254 255. 0 ip helper-address 152. 13. 1. 60 no ip redirects ip pim sparse-dense-mode ip cgmp ip policy route-map CLIENT-SECURED !

Firewall Configuration hostname Scape. Goat nameif gb-ethernet 1 inside security 100 nameif gb-ethernet 0 Firewall Configuration hostname Scape. Goat nameif gb-ethernet 1 inside security 100 nameif gb-ethernet 0 outside security 0 ip address inside 152. 13. 55. 1 255. 252 ip address outside 152. 13. 60. 1 255. 0 global (outside) 1 152. 13. 60. 3 -152. 13. 60. 252 netmask 255. 0 global (outside) 1 152. 13. 60. 253 nat (inside) 1 0. 0 0 0 route inside 152. 13. 145. 0 255. 0 152. 13. 55. 2 1 route outside 0. 0 152. 13. 60. 254 1

Firewall Config – ACL’s access-group inside in interface inside access-group outside in interface outside Firewall Config – ACL’s access-group inside in interface inside access-group outside in interface outside access-list access-list inside permit tcp any range 1024 65535 inside permit tcp any range 1024 65535 inside permit icmp any echo outside permit icmp any echo-reply any any any eq eq eq www https ftp ssh aol

Separate clients at layer 2 • Optionally we can use a Cisco switch feature Separate clients at layer 2 • Optionally we can use a Cisco switch feature which separates layer 2 traffic on a per port basis. • This is called “protected” ports and is available on Cat. 2950/3550 switches and later. – Traffic coming into a “protected” port within a single VLAN cannot communicate at layer 2 with another “protected” port. – Make your uplink port (link to router) be non-protected and then all access ports be “protected”. – Client machines communicate with the router but not each other!

What if all my clients in one subnet don’t want this? • Even though What if all my clients in one subnet don’t want this? • Even though we have segmented things nicely, the people don’t all fit nicely into the VLAN/subnet boundaries! • Choices…. – Policy routing allows us to select clients by logical address within an ACL. – Apply layer 2 traffic separation. – Segment into smaller pieces – the power of VLANs! • Caution! – KISS principle should be kept in mind. – Too much VLAN segmentation can be administratively burdensome. You have to find a balance.

Summing it all up • Actively manage logical addressing. • Segment network using both Summing it all up • Actively manage logical addressing. • Segment network using both physical and administrative boundaries. • Begin deploying security measures: – – Secure the perimeter Secure the RESNET Secure the servers Secure the clients • Just throw in a database, a web server, a router, a couple of firewalls, some programming work and season to taste.

Future steps for UNCG • Enhance our database application for general campus workstation registration Future steps for UNCG • Enhance our database application for general campus workstation registration – If someone moves a workstation, we want it “de-registered” automatically. – When you first plug in, you will be driven to an automatic registration application • The auto-registration app. will allow clients to select their preferred security profile. • Offer “customer self service” for network communications profiles. – Try to get our customers to “buy in” to a more secure profile at registration time. – Directly negotiate higher security communications profiles with specific business units. (They will become VLAN’s – surprise!)

Thank you! • Feel free to share your questions/suggestions. • Email later if you Thank you! • Feel free to share your questions/suggestions. • Email later if you would like to. Joff Thyer, UNCG IT-Networks [email protected] edu