Глава 5. Спектроскопия рассеяния ионов низких энергий

Скачать презентацию Глава 5. Спектроскопия рассеяния ионов низких энергий Скачать презентацию Глава 5. Спектроскопия рассеяния ионов низких энергий

Глава 5.ppt

  • Количество слайдов: 20

>Глава 5. Спектроскопия рассеяния ионов низких энергий  1.  Физические принципы построения метода. Глава 5. Спектроскопия рассеяния ионов низких энергий 1. Физические принципы построения метода. 2. Аппаратура. 2. 1. Пучок ионов. 2. 2. Требования к вакуумной системе. 2. 3. Анализатор энергий рассеянных частиц. 2. 4. Детектирование сигнала рассеянных ионов: ВЭУ, каналтрон. 3. Примеры анализа.

>  Глубина выхода рассеянных ионов  He+      He Глубина выхода рассеянных ионов He+ He 0 Surface atoms: Deeper atoms: detected Not detected

>Физические принципы построения метода   3 He+, 4 He+,    Физические принципы построения метода 3 He+, 4 He+, • Energy 0. 5 – 5 ke. V Ne+, Ar+ • Atomic composition of the Ef = f(M 0, M 1, M 2, θ)*Ei outermost atomic layer • Lateral resolution 0. 01 – 1 mm • Quantitative !! θ • no matrix effects Intensity Energy

>Схема устройства LEIS Схема устройства LEIS

>   Double Toroidal analyzer Energy image: Ø parallel energy detection  Ø Double Toroidal analyzer Energy image: Ø parallel energy detection Ø only low dose needed STATIC LEIS “ Analysis before Damage ” (Molecular Dynamics simulation) “ Hit same place only once “

> Design of LEIS Instrument 4 Dedicated high sensitivity LEIS analyzer - scattering angle Design of LEIS Instrument 4 Dedicated high sensitivity LEIS analyzer - scattering angle 145 degrees - integration over all azimuths - parallel energy detection noble gas ion 4 Limitations in conventional LEIS / ISS source instruments - low sensitivity (destructive technique) position sensitive - mass resolution not sufficient detector sample

>ЭНЕРГЕТИЧЕСКИЙ СПЕКТР РАССЕЯННЫХ ИОНОВ     55     ЭНЕРГЕТИЧЕСКИЙ СПЕКТР РАССЕЯННЫХ ИОНОВ 55 Mn Ne+ alloy 192 Ir Ei = 3000 e. V Energy spectrum of an alloy S ( a. u. ) 103 Rh 39 K 59 Co 51 V 0 1000 Ef (e. V) 2000 3000

>  Использование пучков различных ионов Dispenser cathode, analyzed with 4 He+, 20 Ne+, Использование пучков различных ионов Dispenser cathode, analyzed with 4 He+, 20 Ne+, 40 Ar+ Improved mass resolution with Ne, Ar ! 0 1000 2000 3000 Energy (e. V) Elements: O (16), Ru (96 -104), Ba (134 -138), W (182 -186), Os (186 -192) Sensitivity: 10 ppm for high Z to % for low Z 0 1000 2000 3000 Energy (e. V)

>      Static LEIS  Catalyst 10 wt% WO 3 Static LEIS Catalyst 10 wt% WO 3 / Zr. O 2 (55 m 2/g) 3 ke. V 4 He+ 3 ke. V 20 Ne+ O W Zr He+ + Ne+ analysis: < 0. 3% of outer surface removed by sputtering! Collaboration with group Prof. Israel Wachs, Lehigh University

>Surface Composition of Ag 80 Al 20      Surface Composition Surface Composition of Ag 80 Al 20 Surface Composition Ag 66 Al 34 ( independent of primary energy ) NO matrix effects

>     Rough silica: 50 – 380 m 2/g  Rough silica: 50 – 380 m 2/g LEIS Signals: rough silica about 77% of flat silica (quartz) W. P. A. Jansen et al. , SIA 36 (2004) 1469 - 1478.

>3 ke. V 4 He+ → Multi-1 3 ke. V 4 He+ → Multi-1

>  Time-of-Flight filtered LEIS Background reduction by removal of secondary (sputtered) ions. Applications: Time-of-Flight filtered LEIS Background reduction by removal of secondary (sputtered) ions. Applications: - analysis low mass atoms with He+ ( polymers ! ) - high mass atoms with Ne+, Ar+, Kr+

>Time-of-flight Filtering       period     defl. Time-of-flight Filtering period defl. voltage ion pulse H He heavier particles detector signal timing window time

>5 ke. V  20 Ne+  → Multi-1  LEIS + To. F 5 ke. V 20 Ne+ → Multi-1 LEIS + To. F filter

> Mass / Energy Resolution Separation of Pt and Au extremely difficult ( 1979: Mass / Energy Resolution Separation of Pt and Au extremely difficult ( 1979: impossible ) 4 Application for Pt/Au: – fuel cell technology (electrochemical reduction of oxygen, preferential oxidation of CO in H 2 rich stream, . . . ) Here: demonstration project Pt/Au/ γ – Al 2 O 3 4 Scattering with isotopically pure 84 Kr @ 8 ke. V Collaboration with Emma Schofield, Richard P. Smith Johnson Matthey Technology Centre, UK

>  Mass / Energy Resolution Separation of Pt and Au possible with 8 Mass / Energy Resolution Separation of Pt and Au possible with 8 ke. V 84 Kr+ Peaks scaled to same height

> In – Depth profiling  Two possibilities: 1. Static LEIS (analogous to RBS, In – Depth profiling Two possibilities: 1. Static LEIS (analogous to RBS, MEIS, but better depth resolution ! ) 2. Static LEIS + sputter depth profiling

>    LEIS: Depth profiling modes  • Sputter depth profiling in LEIS: Depth profiling modes • Sputter depth profiling in dual beam mode – LEIS analysis while sputtering with low energy noble gas ions (Ar, Xe) • Static depth profiling – scattering energy is specific for sample atom – additional energy loss on the way through the sample in-depth distribution visible in spectrum (similar to MEIS and RBS) Mesurf scattered ion scattered and re-ionised ion Sidepth Medepth Sisurf Osurf Me. O Si Energy

>Ultra-Shallow Implants. As implant profiling by LEIS depth profiling in dual beam  mode: Ultra-Shallow Implants. As implant profiling by LEIS depth profiling in dual beam mode: As implant 2 ke. V, 1 E 15 /cm² - analysis with He, 3 ke. V, 0° - sputtering with 500 e. V Ar at 60° As, Si, O Results: • minor transient effects in contrast to SIMS (no implantation of Cs) • oxide thickness appr. 1. 9 nm • implant maximum appr. 1. 3 nm deeper compared to SIMS • As concentration at the surface is very low