Дисциплина ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ Лекции – 34 часа

Скачать презентацию Дисциплина ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ Лекции – 34 часа Скачать презентацию Дисциплина ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ Лекции – 34 часа

32204-2010_okht_lk_1_min.ppt

  • Количество слайдов: 28

>Дисциплина     ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ Лекции – 34 часа (17 лк) Дисциплина ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ Лекции – 34 часа (17 лк) Лабораторные работы – 34 часа Практические занятия – 18 часов Форма аттестации – зачет + ЭКЗАМЕН доцент МИНАКОВСКИЙ АЛЕКСАНДР ФЁДОРОВИЧ (ауд. 117 корп. 3) Кафедра технологии неорганических веществ и общей химической технологии

>Учебная литература: 1. Бесков, В. С. Общая химическая технология / В. С. Бесков. – Учебная литература: 1. Бесков, В. С. Общая химическая технология / В. С. Бесков. – М.: ИКЦ Академкнига, 2006. – 452 с. 2. Кутепов, А. М., Общая химическая технология / А. М. Кутепов, Т. И. Бондарева, М. Г. Беренгартен. – М.: ИКЦ Академкнига, 2005. – 528 с. 3. Основы химической технологии: учебник  Под ред. И. П. Мухленова. – М.: Высшая школа, 1991. – 463 с. 4. Ещенко, Л. С. Общая химическая технология. Расчеты химико-технологических процессов: учеб. пособие для студентов специальностей химико-технологического профиля / Л. С. Ещенко, В. А. Салоников. – Минск.: БГТУ, 2007. – 195 с. 5. Ещенко, Л. С. Общая химическая технология. Учебно-методическое пособие для студентов специальностей 1-48 01 01 «Химическая технология производства и переработки неорганических материалов», 1-48 01 02 «Химическая технология производства и переработки органических материалов», 1-48 01 05 «Химическая технология переработки древесины», 1-48 02 01 «Биотехнология», 1-57 01 01 «Охрана окружающей среды и рациональное использование природных ресурсов», 1-57 01 03 «Биоэкология», 1-36 07 01 «Машины и аппараты химических производств и предприятий строительных материалов» очной и заочной форм обучения / Л. С. Ещенко, В. А. Салоников. – Минск.: БГТУ, 2006. – 74 с.

>6. Игнатенков, В. И. Примеры и задачи по общей химической технологии: учебное пособие для 6. Игнатенков, В. И. Примеры и задачи по общей химической технологии: учебное пособие для вузов / В. И. Игнатенков, В. С. Бесков. – М.: ИКЦ Академкнига, 2006. – 200 с. 7. Расчеты по технологии неорганических веществ / Под общ. ред. М. Е. Позина. – Л.: Химия 1977. – 495 с. 8. Ещенко, Л.С. Общая химическая технология. Лабораторный практикум для студентов специальностей 1-48 01 01 «Химическая технология производства и переработки неорганических материалов», 1-48 01 02 «Химическая технология производства и переработки органических материалов», 1-48 01 05 «Химическая технология переработки древесины», 1-48 02 01 «Биотехнология», 1-57 01 01 «Охрана окружающей среды и рациональное использование природных ресурсов», 1-57 01 03 «Биоэкология», 1-36 07 01 «Машины и аппараты химических производств и предприятий строительных материалов» очной и заочной форм обучения / Л. С. Ещенко, М.Т. Соколов, О.Б. Дормешкин, В. Д. Кордиков. – Минск.: БГТУ, 2004. – 83 с.

>Лекция 1: Лекция 1:

>Целью учебной дисциплины «Общая химическая технология» является : Приобретение знаний основных закономерностей химического производства Целью учебной дисциплины «Общая химическая технология» является : Приобретение знаний основных закономерностей химического производства на основе использования положений общенаучных (химия, физика, физическая и коллоидная химия, математика) и общеинженерных дисциплин (процессы и аппараты химических производств) Овладение умениями применения указанных закономерностей к анализу отдельных стадий химико-технологического процесса и создания оптимальных химико-технологических систем Выполнения химико-технологических расчетов и навыками практического использования полученных знаний в своей профессиональной деятельности.

>

>По итогам изучения дисциплины студент должен знать:   основные закономерности химического производства; По итогам изучения дисциплины студент должен знать: основные закономерности химического производства; основные закономерности протекания химических реакций и процессов; особенности химического взаимодействия в гомогенных и гетерогенных процессах; методы выполнения химико-технологических расчетов; основные термодинамические и кинетические закономерности химических превращений в условиях промышленного производства и способы интенсификации процессов; современные методы анализа, разработки и оптимизации химико-технологических процессов; принципы построения и анализа химико-технологических систем; виды химических реакторов, их модели, характеристики и принципы сравнения эффективности их работы.

>уметь:    использовать основные законы химии, процессов и аппаратов химических производств для уметь: использовать основные законы химии, процессов и аппаратов химических производств для термодинамического и кинетического анализа химических процессов; проводить выбор оптимального технологического режима и аппаратуры; составлять технологические схемы и подбирать для них технологическое оборудование; рассчитывать материальные и тепловые балансы, а также основные химико-технологические показатели процессов; анализировать, синтезировать и оптимизировать химико-технологические системы, процессы и подбирать для них типовое оборудование; определять лимитирующие стадии химических превращений; вычислять термодинамические и кинетические характеристики химических превращений; выбирать типы реакторов для химических процессов, производить расчеты химических реакторов и моделировать процессы, протекающие в них.

>Структура дисциплины Структура дисциплины

>Происхождение слова «технология»(от греческих«technos»- искусство, ремесло и  «logos» - учение, наука) вполне отвечает Происхождение слова «технология»(от греческих«technos»- искусство, ремесло и «logos» - учение, наука) вполне отвечает его содержанию: учение об умении, искусстве перерабатывать исходные вещества в полезные продукты. Инженерная химия (согласно Уставу Американского общества инженеров-химиков) – наука, применяющая, принципы естественных наук совместно с принципами экономики и социальных отношений к области, охватывающей непосредственно процессы и аппараты, в которых вещество обрабатывается с целью изменения состояния, содержания энергии и/или свойств. Химическая технология – естественная, прикладная наука о способах и процессах производства продуктов(предметов потребления и средств производства), осуществляемых с участием химических превращений технически, экономически и социально целесообразным путем.

>Химическая технология как наука имеет:       Предмет изучения – Химическая технология как наука имеет: Предмет изучения – химическое производство Химическое производство – совокупность процессов и операций, осуществляемых в машинах и аппаратах и предназначенных для переработки сырья путем химических превращений в необратимые продукты Цель изучения Способ производства – создание целесообразных способов производства необходимых человеку продуктов – совокупность всех операций, которые проходит сырьё до получения из него продукта. Он слагается из последовательных операций, протекающих в соответствующих машинах и аппаратах. Операция происходит в одном или нескольких аппаратах; она представляет собой сочетание различных технологических процессов.

>Химическое производство должно быть организовано таким образом, чтобы соблюдались следующие требования:   получение Химическое производство должно быть организовано таким образом, чтобы соблюдались следующие требования: получение продукта, отвечающего требованиям СТБ, ТУ; максимальное использование сырья и энергии; максимальная экономическая эффективность; экологическая безопасность; безопасность и надежность эксплуатации оборудования. Основные направления в развитии химической технологии: создание высокоэффективных производств, энерго- и материалосберегающие технологии, защита окружающей среды от промышленных загрязнений, новые эффективные процессы получения химической продукции.

>Химическая технология Химическая технология

>2. История развития химической промышленности Более 2000 лет назад - сера, природная сода и 2. История развития химической промышленности Более 2000 лет назад - сера, природная сода и минеральные краски были известны в Риме и Византии XV в. - в Европе стали появляться мелкие специализированные цеха по производству кислот, солей, щелочей, фармацевтических препаратов

>Особенность современной химической промышленности — ориентация главных наукоемких производств (фармацевтического, полимерных материалов, реагентов и Особенность современной химической промышленности — ориентация главных наукоемких производств (фармацевтического, полимерных материалов, реагентов и особо чистых веществ), а также продукции парфюмерно-косметической, бытовой химии и т.д. на обеспечение повседневных нужд человека и его здоровья. Особенность химической промышленности — очень широкая, разнообразная по составу сырьевая база. Она включает горнохимическую промышленность (добычу серы, фосфоритов, калийных солей, поваренной соли и т.д.) Важнейший результат НТП во второй половине XX в. — повсеместный и широкий переход химической промышленности на использование продуктов переработки нефти, попутного и природного газа.

>Специфические особенности химической промышленности, влияющие на ее размещение, следующие:  1) очень высокая энергоемкость Специфические особенности химической промышленности, влияющие на ее размещение, следующие: 1) очень высокая энергоемкость (в первую очередь теплоемкость) в отраслях, связанных со структурной перестройкой вещества (получение полимерных материалов, продукция органического синтеза, электрохимические процессы и др.); 2) высокая водоемкость производств (охлаждение агрегатов, технологические процессы); 3) невысокая трудоемкость большинства производств отрасли; 4) очень высокая капиталоемкость; 5) большие объемы используемого сырья и многих видов готовой продукции; 6) экологические проблемы, обусловленные производством и потреблением ряда химических продуктов.

>Крупнейшие химические компании мира Крупнейшие химические компании мира

>Основу химического комплекса Беларуси составляют 83 предприятия и организации, входящие в государственный концерн «Белнефтехим». Основу химического комплекса Беларуси составляют 83 предприятия и организации, входящие в государственный концерн «Белнефтехим». В общем объеме промышленной продукции Беларуси их доля занимает примерно 15%, в общереспубликанском экспорте - около 17%. Ведущее место по объему производимой продукции и численности работников занимают горнохимическая (производство калийных удобрений), основная химия (производство химических волокон и нитей) и нефтехимическая отрасли. Основными видами деятельности данных предприятий являются производство минеральных удобрений, шин, химических волокон и нитей, выпуск продукции из стекловолокна, производство пластмассовых изделий, лаков и красок. Данная продукция экспортируется более чем в 80 стран мира. Годовой объем внешнеторгового оборота химического комплекса республики составляет более 3 млрд. долларов США, в том числе экспорт - 1,5 млрд. долларов США. Химическая промышленность Республики Беларусь

>Химико-технологический процесс          В совокупном химико-технологическом Химико-технологический процесс В совокупном химико-технологическом процессе выделяются следующие виды отдельных процессов и операций, классифицированных по их основному назначению, и соответствующие аппараты и машины, в которых они осуществляются: Механические и гидромеханические процессы – перемещение материалов, изменение их формы и размеров, сжатие и расширение, смешение и разделение потоков. Все они протекают без изменения химического и фазового состава обрабатываемого материала. Теплообменные процессы – нагрев, охлаждение, изменение фазового состояния. Химический и фазовый состав в них не меняется. Массообменные процессы – межфазный обмен, в результате которого меняется компонентный состав контактирующих фаз без коренного изменения химического состава, т.е. химических превращений. Химические процессы – процессы, связанные с изменением химического состава веществ; данные процессы проводятся в химических реакторах. Химико-технологический процесс (ХТП) – последовательность химических и физико-химических процессов целенаправленной переработки исходных веществ в продукт.

>химико-технологическая система представляет собой модель химического производства или химико-технологического процесса, отображающую его  химико-технологическая система представляет собой модель химического производства или химико-технологического процесса, отображающую его структуру и позволяющую прогнозировать те или иные свойства и показатели Продукт дополнительный Структура и функциональные элементы химического производства: 1 – подготовка сырья; 2 – химическая переработка сырья; 3 – выделение целевого продукта; 4 – обезвреживание и переработка побочных продуктов; 5 – энергетическая подсистема; 6 – подготовка вспомогательных материалов и водоподготовка; 7 – подсистема управления Химико-технологическая система (ХТС) – совокупность аппаратов, машин, реакторов, других устройств (элементов), а также материальных, тепловых, энергетических и других потоков (связей) между ними, функционирующая как единое целое и предназначенная для переработки исходных веществ (сырья) в продукты.

>Состав химического производства, обеспечивающий его функционирование как производственной единицы: химико-технологический процесс; хранилища сырья, продуктов Состав химического производства, обеспечивающий его функционирование как производственной единицы: химико-технологический процесс; хранилища сырья, продуктов и других материалов; система организации транспортировки сырья, продуктов, вспомогательных материалов, промежуточных веществ, отходов; дополнительные здания, сооружения; обслуживающий персонал производственных подразделений; система управления, обеспечения и безопасности.

>Конечные продукты ХТП  целевые продукты побочные продукты отходы это продукты целевого или многоцелевого Конечные продукты ХТП целевые продукты побочные продукты отходы это продукты целевого или многоцелевого назначения, получаемые при переработке сырья при заданных оптимальных условиях и соответствующие требованиям технических условий. образуются параллельно с целевым продуктом в результате переработки сырья это побочные продукты, которые в настоящее время по техническим или экономическим причинам не находят применения и выводятся из ХТП в окружающую среду.

>Показатели химического производства и химико-технологического процесса Эксплуатационные показатели характеризуют изменения, возникающие в химико-технологическом процессе Показатели химического производства и химико-технологического процесса Эксплуатационные показатели характеризуют изменения, возникающие в химико-технологическом процессе при появлении отклонений от регламентированных условий и состояний. Основными эксплуатационными показателями являются надежность, безопасность функционирования, чувствительность, управляемость и регулируемость. Технологические показатели: расходные коэффициенты; степень превращения исходных реагентов; селективность; выход продукта; производительность (мощность); интенсивность процесса; удельные капитальные затраты; качество продукта. Экономические показатели определяют экономическую эффективность производства. К ним относятся себестоимость продукции, производительность труда Социальные показатели определяют комфортность работы на данном производстве и его влияние на окружающую среду.

>Технологические показатели Производительность (мощность) – количество получаемого продукта или количество  перерабатываемого сырья (G) Технологические показатели Производительность (мощность) – количество получаемого продукта или количество перерабатываемого сырья (G) в единицу времени (t). П = G/t αR = или αR = Выход продукта – это отношение реально полученной массы (химического количества) продукта к максимально возможной его массе (химическому количеству), которая могла бы быть получена при данных условиях осуществления химической реакции:

>Расходные  коэффициенты – величины,  характеризующие   расход сырья, воды, топлива, электроэнергии, Расходные коэффициенты – величины, характеризующие расход сырья, воды, топлива, электроэнергии, пара, вспомогательных материалов на производство единицы продукции. где Рк –расходный коэффициент, т/т, кг/т, м3/т; m1 – масса сырья, кг, т; m2 – масса целевого продукта, кг, т. Рк = Технологические показатели

>Технологические показатели Селективность – это отношение массы (химического количества) целевого продукта, полученного практически, к Технологические показатели Селективность – это отношение массы (химического количества) целевого продукта, полученного практически, к общей массе (химическому количеству) образовавшихся продуктов: Степень превращения показывает, насколько полно в химико-технологическом процессе используется сырье. Степень превращения – это отношение массы (химического количества) исходного реагента, превратившегося в результате химической реакции в продукты, к его первоначальной массе (химическому количеству). хi = где хi – степень превращения реагента I; mi, 0 – масса реагента I в исходной реакционной смеси, кг; mi – масса реагента I в реакционной смеси, выходящей из аппарата или находящейся в реакторе, кг.  =

>Технологические показатели Интенсивностью называется производительность, отнесенная к какой-либо величине, характеризующей размеры реактора, аппарата,  Технологические показатели Интенсивностью называется производительность, отнесенная к какой-либо величине, характеризующей размеры реактора, аппарата,  его объему, площади поперечного сечения и т. д.: I = где I – интенсивность, кг/(м3  ч), т/(м2  сут); V – объем аппарата, м3; F – поверхность аппарата, м2 При анализе работы каталитических реакторов принято относить производительность аппарата в целом к единице объема или массы катализатора, загруженного в реактор. Такую величину, численно равную количеству продукта, полученного с единицы объема или массы катализатора, называют производительностью катализатора, или его напряженностью

>