Скачать презентацию Controls Overview April 27 2005 Outline Goals Status Скачать презентацию Controls Overview April 27 2005 Outline Goals Status

fc211a2d6c5ca435681200d910ec5469.ppt

  • Количество слайдов: 21

Controls Overview April 27, 2005 Outline Goals Status update Resources Design Slides for Global Controls Overview April 27, 2005 Outline Goals Status update Resources Design Slides for Global Systems Task descriptions Next 6 months Conclusions • . Note: As this is being recorded – please add ” it is my impression” and “we expect “ wherever appropriate April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

LCLS Control System Goals Provide a fully integrated control system to support the construction, LCLS Control System Goals Provide a fully integrated control system to support the construction, test, installation, integration, operation and automation of the LCLS Accelerator Standardize on all devices and components across all subsystems. Identify all data either by pulse id, beam pulse related time stamp, or 500 msec rough time stamp. Full integration with the SLC – timing, use of LCLS data in SLC high level applications, and use of SLC data in LCL Provide an upgrade path for the SLC April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

Update May 2004 – April 2005 (1) 3 month continuing resolution WBS reorganized to Update May 2004 – April 2005 (1) 3 month continuing resolution WBS reorganized to move all design work into 1. 1. 3. 5 under direction of the control group Acquire personnel 8 project engineers – Koturri, Lucchini, Allison, Straumann, Murray, Fairley, Rogind, (offers being made to junior engineer, jobs open for junior proj. eng) 1 low level programmer (offer being made to junior engineer) 2 EE/ board designers – (support from ESD, evaluating existing designs, interviewing Steve Lewis on controls at LLNL Conventional Facilities, Wiring, Racks, and Power Distribution – Ortega (lead), ESD support, need to hire April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

Update May 2004 – April 2005 (2) Facility Controls, XRay Transport are integrated into Update May 2004 – April 2005 (2) Facility Controls, XRay Transport are integrated into control design (details remain) Rack Layout, Tray Design, and wiring penetrations for Injector, L 01 through BC 1. LTU is 50% complete. Prototypes in test: PNet – hardware design complete, driver functional, tests needed Timing – hardware from SLS being put into test Power Supply – hardware from SLS in test for stability and precision Video – cameras in test SLC-Aware IOC is 70% complete. April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

Update May 2004 – April 2005 (3) Design efforts ready for prototyping: LLRF and Update May 2004 – April 2005 (3) Design efforts ready for prototyping: LLRF and BPM Prototypes needed 120 Hz fast feedback position controllers Machine Protection April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

Personnel – Resources Ctl. Elec. Engineer Ctl. Sr. Elec. Tech. Ctl. Elec Tech. Pwr. Personnel – Resources Ctl. Elec. Engineer Ctl. Sr. Elec. Tech. Ctl. Elec Tech. Pwr. Elec. Engineer Pwr. Sr. Elec. Tech. Control Prog. 2004 2. 42. 56. 07 1. 94. 42. 81 2005 10. 37 3. 44. 60 1. 39. 86 10. 18 2006 8. 12 2. 66 2. 20. 32. 31 10. 29 Ramp up plan: offset 3 months. We are borrowing most of our hardware support. We need some LCLS inhouse support April 27, 2005 EPICS Collaboration Meeting 2007 6. 07 1. 90 4. 63. 51. 72 6. 32 2008 3. 26. 77. 62. 10. 05 6. 56 Total 30. 24 9. 33 8. 12 4. 26 2. 37 34. 17 Will be reworked after hardware designs are reviewed and finalized. LCLS Control Group [email protected] stanford. edu

Integration with the SLC Control System SLC Alpha All High Level Apps MPG EPICS Integration with the SLC Control System SLC Alpha All High Level Apps MPG EPICS W/S WS EPICS W/S Distributed Applications Distributed Applications High Level Applications Xterm SLC Net (Data Communication) KISNet (fast closed loop control data) PNet (Pulse ID / User ID) Ethernet (EPICS Protocol) micro Camac I/O Micro E emulator V G I/OC (SLC-aware) RF reference clock April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

SLC-Aware IOC April 27, 2005 EPICS Collaboration Meeting LCLS Control Group Lcls-controls@slac. stanford. edu SLC-Aware IOC April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

System Design SLC Alpha Apps EPICS W/S WS EPICS W/S Distributed Applications Distributed Applications System Design SLC Alpha Apps EPICS W/S WS EPICS W/S Distributed Applications Distributed Applications High Level Applications Xterm Fast Feedback over Ethernet? SLC-Net over Ethernet Channel Access IOC C P U E E V V LLRF G R HPRF I/O Boards IOC 16 triggers Drive Laser Off C P U E V R IOC Diag C P U E Pwr V Supply R Ctrl 16 triggers Single Bunch Beam Dumper Machine Protection Beam Code + EPICS Time + EPICS Events April 27, 2005 EPICS Collaboration Meeting C P Vacuum U Ctrl LCLS Control Group [email protected] stanford. edu

LCLS Project Engineering Tasks 1 RF Control - Koturri 3 Diagnostics – Straumann, Murray, LCLS Project Engineering Tasks 1 RF Control - Koturri 3 Diagnostics – Straumann, Murray, tbd Toroids & Faraday Cups, Beam Stops, Profile Monitors & Video Devices, Wire, Scanners, Bunch Length Monitors & E/O Diagnostics, Beam Position Monitors, Collimators, All other stops Gun Laser and Drive Control – Contract Out 1 Vacuum – Steve Lewis supporting the design now / Job Ad Open 1 Magnet Power Supply Control IOC and software - Luchini 1 Beam Containment / Personnel Protection / Machine Protection - Chevstov 1 Low Level Engineer - Norum 2 High Level Application Engineers – Fairley, Rogind 1 RDB Manager – job ad placed 1 System manager – need to place job ad Resolve/Formalize Group Leader – currently co-managed Bob and Patrick April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

LCLS Software Tasks – Purchase/Steal/Develop SLC-aware IOC – 70% complete. Expected completion July 1, LCLS Software Tasks – Purchase/Steal/Develop SLC-aware IOC – 70% complete. Expected completion July 1, 2005. Machine Protection / Mitigation (look at SNS and JLAB) Master pattern generator (look at PSI/Diamond) – being set up Fast Feedback Communication – need to prototype High Level Applications (Matlab or XAL) Correlation Plots (look at JLab) Fast Feedback Loops Emittance reconstruction from wire scans and profile monitors Profile monitor image analysis for slice emittance with the transverse cavity Beam Steering and online orbit modeling Beam Steering “scans” to emittance reconstruction from wire scans and profile monitors April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

LCLS Software Tasks – Purchase/Steal/Develop Data Archiving to support all phases of the project LCLS Software Tasks – Purchase/Steal/Develop Data Archiving to support all phases of the project (SNS) Operator Display Tools / Synoptic, Plots, Waveform, Image (EDM) Alarm Management (ALH, CMLOG) Electronic Log (DESY, JLAB) High Level Application Support: Matlab, XAL, Python Control System Configuration Tools (VDCT, RDB) Relational Database Management in all project aspects (Based on SNS, PEP) Naming Standard (PEP) April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

Global LCLS Hardware Tasks – Purchase/Steal/Develop (1) New timing boards – Master Pattern Generator Global LCLS Hardware Tasks – Purchase/Steal/Develop (1) New timing boards – Master Pattern Generator and Event Receiver Boards (PSI, DIAMOND) Machine Protection System (SNS/JLAB) – needs to be evaluated RF Control – In-house analog with COTS ADCs and DACs Diagnostics Toroids & Faraday Cups Beam Stops Profile Monitors & Video Devices – evaluating commercial cameras Wire Scanners Bunch Length Monitors & E/O Diagnostics Beam Position Monitors – in-house analog with COTS ADCs and DACs Collimators All other stops April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

LCLS Hardware Tasks – Purchase/Steal/Develop (2) Gun Laser and Drive Control – Integrate Thales LCLS Hardware Tasks – Purchase/Steal/Develop (2) Gun Laser and Drive Control – Integrate Thales Controls either device layer or Labview Vacuum Standards – being finalized Magnet Power Supply Controllers (PSI) – in test at SLAC Beam Containment / Personnel Protection – through first review April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

Next 6 months Finish hiring: hardware support – EEs and Techs Complete hiring actions Next 6 months Finish hiring: hardware support – EEs and Techs Complete hiring actions on project engineers and programmers. Acquire RDB support. Complete detailed designs per subsystem and have them reviewed – revamp costs – by the end of this FY. Complete evaluation/test of PNet, Timing, LLRF, PS, MPS, PPS, and BPM Complete the SLC-Aware IOC Integrate Laser Control April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

Conclusions Control engineers are in place for most major subsystems. The WBS has been Conclusions Control engineers are in place for most major subsystems. The WBS has been reorganized to move all of the design activities into global controls under 1. 1. 3. 5. Signature authority for all x. x. 2 level WBS is shared. The SLC-aware IOC and SLC to EPICS timing issues are well on the way to being resolved. Hardware components have been identified for most of the risky areas. MPS and fast feedback need attention. PPS needs to complete the citizen review. By the end of this year, hardware designs should be proven as prototypes and the schedule and budget revamped to reflect the final design decisions. April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

Timing Nsec resolution on the timing gates produced from the Event Rcvr 20 psec Timing Nsec resolution on the timing gates produced from the Event Rcvr 20 psec jitter pulse to pulse Event generator passes along beam code data from SLC Event generator sends events to receivers including: 360 Hz, 120 Hz, 10 Hz and 1 Hz fiducials last beam pulse OK Machine mode EPICS time stamp Event receivers produce to the IOC interrupts on events data from the event generator in registers 16 triggers with configurable delay and width 476 MHz RF Reference SLC micro Master Pattern Generator 128 bit beam code @ 360 Hz IOC C P U FIDO 119 MHz w/ 360 Hz fiducial E E V V LLRF G R HPRF I/O Boards IOC 16 triggers Drive Laser Off C P U E V R IOC Diag C P U E Power V Supply R Ctrl 16 triggers Single Bunch Beam Dumper Machine Protection Beam Code + EPICS Time + EPICS Events April 27, 2005 EPICS Collaboration Meeting C P Vacuum U Ctrl LCLS Control Group [email protected] stanford. edu

SLC Net “Micro” Communication Provides data to SLC Applications from EPICS SLC Alpha Apps SLC Net “Micro” Communication Provides data to SLC Applications from EPICS SLC Alpha Apps Xterm Operates at 10 Hz (not beam synched) Requires significant development in the IOC to emulate SLC “micro” in the IOC On an application by application basis we will evaluate what functions to provide SLC-Net over Ethernet IOC C P U E E V V LLRF G R HPRF I/O Boards April 27, 2005 EPICS Collaboration Meeting IOC C P U E V R Diag IOC C P U E Pwr V Supply R Ctrl LCLS Control Group [email protected] stanford. edu C P Vacuum U Ctrl

Channel Access SLC Alpha Apps EPICS W/S WS EPICS W/S Distributed Applications Distributed Applications Channel Access SLC Alpha Apps EPICS W/S WS EPICS W/S Distributed Applications Distributed Applications High Level Applications Xterm Channel Access IOC C P U E E V V LLRF G R HPRF I/O Boards IOC C P U E V R Diag IOC C P U E Power V Supply R Ctrl C P Vacuum U Ctrl A channel access server in SLC provides data from existing SLC micros to EPICS applications All IOCs have both a channel access server to allow access and a client to have access Channel access provides read/write by all clients to all data with a server. All EPICS high level applications are channel access clients that may or may not have a server. April 27, 2005 EPICS Collaboration Meeting LCLS Control Group [email protected] stanford. edu

Fast Feedback Fast feedback is required to run at 120 Hz Values will be Fast Feedback Fast feedback is required to run at 120 Hz Values will be transmitted from RF and selected diagnostics to Power Supply and RF IOCs The communication needs to be reliable, verifiable, and have a well thought out degradation The entire time budget to read, transmit, commute, control, and settle is 8. 3 msec First estimates are that the control system can use 2 msecs to transmit and receive the data Can this be done over a common Ethernet with adequate bandwidth – or is a dedicated one needed? Fast Feedback over Ethernet? IOC C P U E E V V LLRF G R HPRF I/O Boards April 27, 2005 EPICS Collaboration Meeting IOC C P U E V R Diag IOC C P U E Power V Supply R Ctrl LCLS Control Group [email protected] stanford. edu C P Vacuum U Ctrl

Machine Protection Machine protection is used here to define faults requiring global mitigation Response Machine Protection Machine protection is used here to define faults requiring global mitigation Response time is under 8 msec There are two mitigation devices: Single Beam Dumper - which prohibits the beam from entering the undulator Drive Laser Off – which prohibits beam from entering the cavity Action must also be taken to reduce the repetition rate of the beam This new design is required to interrupt the beam before the next beam pulse. IOC C P U E E V V LLRF G R Drive Laser Off HPRF I/O Boards IOC C P U E V R Diag IOC C P U E Par V Supply R Ctrl Single Beam Dumper Machine Protection April 27, 2005 EPICS Collaboration Meeting C P Vacuum U Ctrl LCLS Control Group [email protected] stanford. edu