Скачать презентацию Chapter 8 7 Interest Rates and Bond Valuation Скачать презентацию Chapter 8 7 Interest Rates and Bond Valuation

6041b972bdf93f3bce87dd0d1c184de1.ppt

  • Количество слайдов: 41

Chapter 8 (7) Interest Rates and Bond Valuation Mc. Graw-Hill/Irwin Copyright © 2013 by Chapter 8 (7) Interest Rates and Bond Valuation Mc. Graw-Hill/Irwin Copyright © 2013 by The Mc. Graw-Hill Companies, Inc. All rights reserved.

8. 1 Bonds and Bond Valuation o. A bond is a legally binding agreement 8. 1 Bonds and Bond Valuation o. A bond is a legally binding agreement between a borrower and a lender that specifies the: Par (face) value n Coupon rate n Coupon payment n Maturity Date n o The yield to maturity is the required market interest rate on the bond. 8 -1

Bond Valuation o Primary n Principle: Value of financial securities = PV of expected Bond Valuation o Primary n Principle: Value of financial securities = PV of expected future cash flows o Bond value is, therefore, determined by the present value of the coupon payments and par value. o Interest rates are inversely related to present (i. e. , bond) values. 8 -2

The Bond-Pricing Equation 8 -3 The Bond-Pricing Equation 8 -3

Bond Example o Consider a U. S. government bond with as 6 3/8% coupon Bond Example o Consider a U. S. government bond with as 6 3/8% coupon that expires in December 2016. n n The Par Value of the bond is $1, 000. Coupon payments are made semiannually (June 30 and December 31 for this particular bond). Since the coupon rate is 6 3/8%, the payment is $31. 875. On January 1, 2012 the size and timing of cash flows are: 8 -4

Bond Example o On January 1, 2012, the required yield is 5%. o The Bond Example o On January 1, 2012, the required yield is 5%. o The current value is: 8 -5

Bond Example: Calculator Find the present value (as of January 1, 2012), of a Bond Example: Calculator Find the present value (as of January 1, 2012), of a 6 3/8% coupon bond with semi-annual payments, and a maturity date of December 2016 if the YTM is 5%. N I/Y PV PMT FV 10 2. 5 – 1, 060. 17 31. 875 = 1, 000× 0. 06375 2 1, 000 8 -6

Bond Example o Now assume that the required yield is 11%. o How does Bond Example o Now assume that the required yield is 11%. o How does this change the bond’s price? 8 -7

YTM and Bond Value When the YTM < coupon, the bond trades at a YTM and Bond Value When the YTM < coupon, the bond trades at a premium. Bond Value 1300 1200 When the YTM = coupon, the bond trades at par. 1100 1000 800 0 0. 01 0. 02 0. 03 0. 04 0. 05 0. 06 0. 07 6 3/8 0. 09 0. 1 Discount Rate When the YTM > coupon, the bond trades at a discount. 8 -8

Bond Concepts q q Bond prices and market interest rates move in opposite directions. Bond Concepts q q Bond prices and market interest rates move in opposite directions. When coupon rate = YTM, price = par value When coupon rate > YTM, price > par value (premium bond) When coupon rate < YTM, price < par value (discount bond) 8 -9

Interest Rate Risk o Price Risk n Price risk is simply the risk that Interest Rate Risk o Price Risk n Price risk is simply the risk that the price of a security will fall. n Change in price due to changes in interest rates n Long-term bonds have more price risk than short-term bonds n Low coupon rate bonds have more price risk than high coupon rate bonds. 8 -10

Reinvestment Rate Risk o o o The risk that future coupons from a bond Reinvestment Rate Risk o o o The risk that future coupons from a bond will not be reinvested at the prevailing interest rate when the bond was initially purchased. Reinvestment risk is more likely when interest rates are declining. Reinvestment risk affects the yield-to-maturity of a bond, which is calculated on the idea that all future coupon payments will be reinvested at the interest rate when the bond was first purchased. 8 -11

Reinvestment Rate Risk o Two factors that have a bearing on the degree of Reinvestment Rate Risk o Two factors that have a bearing on the degree of reinvestment risk are: Maturity of the bond - The longer the maturity of the bond, the higher the likelihood that interest rates will be lower than they were at the time of the bond purchase. Interest rate on the bond - The higher the interest rate, the bigger the coupon payments that have to be reinvested, and consequently the reinvestment risk. 8 -12

Interest Rate Risk o Reinvestment Rate Risk n n Short-term bonds have more reinvestment Interest Rate Risk o Reinvestment Rate Risk n n Short-term bonds have more reinvestment rate risk than long-term bonds. High coupon rate bonds have more reinvestment rate risk than low coupon rate bonds. 8 -13

Bond Value Maturity and Bond Price Volatility Consider two otherwise identical bonds. The long-maturity Bond Value Maturity and Bond Price Volatility Consider two otherwise identical bonds. The long-maturity bond will have much more volatility with respect to changes in the discount rate. Par Short Maturity Bond C Discount Rate Long Maturity Bond 8 -14

Bond Value Coupon Rates and Bond Prices Consider two otherwise identical bonds. The low-coupon Bond Value Coupon Rates and Bond Prices Consider two otherwise identical bonds. The low-coupon bond will have much more volatility with respect to changes in the discount rate. Par High Coupon Bond Low Coupon Bond C Discount Rate 8 -15

Computing Yield to Maturity o Yield to maturity is the rate implied by the Computing Yield to Maturity o Yield to maturity is the rate implied by the current bond price. o Finding the YTM requires trial and error if you do not have a financial calculator, and it is similar to the process for finding r with an annuity. o If you have a financial calculator, enter N, PV, PMT, and FV, remembering the sign convention (PMT and FV need to have the same sign, PV the opposite sign). 8 -16

YTM with Annual Coupons o Consider a bond with a 10% annual coupon rate, YTM with Annual Coupons o Consider a bond with a 10% annual coupon rate, 15 years to maturity, and a par value of $1, 000. The current price is $928. 09. Will the yield be more or less than 10%? n N = 15; PV = -928. 09; FV = 1, 000; PMT = 100 n CPT I/Y = 11% n 8 -17

YTM with Semiannual Coupons o Suppose a bond with a 10% coupon rate and YTM with Semiannual Coupons o Suppose a bond with a 10% coupon rate and semiannual coupons has a face value of $1, 000, 20 years to maturity, and is selling for $1, 197. 93. Is the YTM more or less than 10%? n What is the semi-annual coupon payment? n How many periods are there? n N = 40; PV = -1, 197. 93; PMT = 50; FV = 1, 000; CPT I/Y = 4% (Is this the YTM? ) n YTM = 4%*2 = 8% n 8 -18

Current Yield vs. Yield to Maturity o o o Current Yield = annual coupon Current Yield vs. Yield to Maturity o o o Current Yield = annual coupon / price Yield to maturity = current yield + capital gains yield Example: 10% coupon bond, with semi-annual coupons, face value of 1, 000, 20 years to maturity, $1, 197. 93 price n n Current yield = 100 / 1197. 93 =. 0835 = 8. 35% Price in one year, assuming no change in YTM = 1, 193. 68 Capital gain yield = (1193. 68 – 1197. 93) / 1197. 93 = -. 0035 = -. 35% YTM = 8. 35 -. 35 = 8%, which is the same YTM computed earlier 8 -19

Zero Coupon Bonds o o o Make no periodic interest payments (coupon rate = Zero Coupon Bonds o o o Make no periodic interest payments (coupon rate = 0%) The entire yield to maturity comes from the difference between the purchase price and the par value Cannot sell for more than par value Sometimes called zeroes, deep discount bonds, or original issue discount bonds (OIDs) Treasury Bills and principal-only Treasury strips are good examples of zeroes 8 -20

Pure Discount Bonds Information needed for valuing pure discount bonds: n Time to maturity Pure Discount Bonds Information needed for valuing pure discount bonds: n Time to maturity (T) = Maturity date - today’s date n Face value (F) n Discount rate (r) Present value of a pure discount bond at time 0: 8 -21

Pure Discount Bonds: Example Find the value of a 15 -year zero-coupon bond with Pure Discount Bonds: Example Find the value of a 15 -year zero-coupon bond with a $1, 000 par value and a YTM of 12%. 8 -22

Bond Pricing with a Spreadsheet o There are specific formulas for finding bond prices Bond Pricing with a Spreadsheet o There are specific formulas for finding bond prices and yields on a spreadsheet. n n PRICE(Settlement, Maturity, Rate, Yld, Redemption, Frequency, Basis) YIELD(Settlement, Maturity, Rate, Pr, Redemption, Frequency, Basis) Settlement and maturity need to be actual dates The redemption and Pr need to given as % of par value o Click on the Excel icon for an example. 8 -23

8. 2 Government Bonds o Treasury Securities n n o Federal government debt T-bills 8. 2 Government Bonds o Treasury Securities n n o Federal government debt T-bills – pure discount bonds with original maturity less than one year T-notes – coupon debt with original maturity between one and ten years T-bonds – coupon debt with original maturity greater than ten years Municipal Securities n n n Debt of state and local governments Varying degrees of default risk, rated similar to corporate debt Interest received is tax-exempt at the federal level 8 -24

After-tax Yields o. A taxable bond has a yield of 8%, and a municipal After-tax Yields o. A taxable bond has a yield of 8%, and a municipal bond has a yield of 6%. n If you are in a 40% tax bracket, which bond do you prefer? o 8%(1 -. 4) = 4. 8% o The after-tax return on the corporate bond is 4. 8%, compared to a 6% return on the municipal n At what tax rate would you be indifferent between the two bonds? o 8%(1 – T) = 6% o T = 25% 8 -25

Corporate Bonds o Greater default risk relative to government bonds o The promised yield Corporate Bonds o Greater default risk relative to government bonds o The promised yield (YTM) may be higher than the expected return due to this added default risk 8 -26

Corporate Bonds o Default Risk Premium (DRP) DRPj = ijt – i. Tt ijt Corporate Bonds o Default Risk Premium (DRP) DRPj = ijt – i. Tt ijt = interest rate on security j at time t i. Tt = interest rate on similar maturity U. S. Treasury security at time t 8 -27

Bond Credit Ratings 8 -28 Bond Credit Ratings 8 -28

Bond Ratings – Investment Quality o High Grade Moody’s Aaa and S&P AAA – Bond Ratings – Investment Quality o High Grade Moody’s Aaa and S&P AAA – capacity to pay is extremely strong n Moody’s Aa and S&P AA – capacity to pay is very strong n o Medium Grade Moody’s A and S&P A – capacity to pay is strong, but more susceptible to changes in circumstances n Moody’s Baa and S&P BBB – capacity to pay is adequate, adverse conditions will have more impact on the firm’s ability to pay n 8 -29

Bond Ratings - Speculative o Low Grade Moody’s Ba and B n S&P BB Bond Ratings - Speculative o Low Grade Moody’s Ba and B n S&P BB and B n Considered speculative with respect to capacity to pay. n o Very Low Grade Moody’s C n S&P C & D n Highly uncertain repayment and, in many cases, already in default, with principal and interest in arrears. n 8 -30

8. 3 Bond Markets o Primarily over-the-counter transactions with dealers connected electronically o Extremely 8. 3 Bond Markets o Primarily over-the-counter transactions with dealers connected electronically o Extremely large number of bond issues, but generally low daily volume in single issues o Makes getting up-to-date prices difficult, particularly on a small company or municipal issues 8 -31

Treasury Quotations 8 Nov 28 132: 23 132: 24 -12 5. 14 o What Treasury Quotations 8 Nov 28 132: 23 132: 24 -12 5. 14 o What is the coupon rate on the bond? o When does the bond mature? o What is the bid price? What does this mean? o What is the ask price? What does this mean? o How much did the price change from the previous day? o What is the yield based on the ask price? 8 -32

Clean versus Dirty Prices o o o Clean price: quoted price Dirty price: price Clean versus Dirty Prices o o o Clean price: quoted price Dirty price: price actually paid = quoted price plus accrued interest Example: Consider T-bond in previous slide, assume today is July 15, 2012 n n n o Prices (based on ask): n n o Number of days since last coupon = 61 Number of days in the coupon period = 184 Accrued interest = (61/184)(. 04*1, 000) = 13. 26 Clean price = 1, 327. 50 Dirty price = 1, 327. 50 + 13. 26 = 1, 340. 76 So, you would actually pay $1, 340. 76 for the bond. 8 -33

Accrued Interest and Prices o Accrued interest must be paid by the buyer of Accrued Interest and Prices o Accrued interest must be paid by the buyer of a bond to the seller of a bond if the bond is purchased between interest payment dates. o The price of the bond with accrued interest is called the full price or the dirty price, the price without accounting for accrued interest is the clean price. 8 -34

Accrued Interest on Bonds o Accrued interest on T-notes and T-bonds is calculated as: Accrued Interest on Bonds o Accrued interest on T-notes and T-bonds is calculated as: o The full (or dirty) price of a T-note or T-bond is the sum of the clean price (Vb) and the accrued interest 8 -35

Accrued Interest Example o You buy a 6% coupon $1, 000 par T-bond 59 Accrued Interest Example o You buy a 6% coupon $1, 000 par T-bond 59 days after the last coupon payment. Settlement occurs in two days. You become the owner 61 days after the last coupon payment (59+2), and there are 121 days remaining until the next coupon payment. The bond’s clean price quote is 120: 19. What is the full or dirty price (sometimes called the invoice price)? o The clean price is 120: 19 or 120 19/32% of $1, 000 or $1, 205. 9375. Thus, the dirty price is $1, 205. 9375 + $10. 05 = $1, 215. 9875. o 8 -36

8. 4 Inflation and Interest Rates o Real rate of interest – change in 8. 4 Inflation and Interest Rates o Real rate of interest – change in purchasing power o Nominal rate of interest – quoted rate of interest, change in purchasing power and inflation o The ex ante nominal rate of interest includes our desired real rate of return plus an adjustment for expected inflation. 8 -37

Real versus Nominal Rates o (1 + R) = (1 + r)(1 + h), Real versus Nominal Rates o (1 + R) = (1 + r)(1 + h), where R = nominal rate n r = real rate n h = expected inflation rate n o Approximation n R=r+h 8 -38

The Fisher Effect: Example o If we require a 10% real return and we The Fisher Effect: Example o If we require a 10% real return and we expect inflation to be 8%, what is the nominal rate? o R = (1. 1)(1. 08) – 1 =. 188 = 18. 8% o Approximation: R = 10% + 8% = 18% o Because the real return and expected inflation are relatively high, there is a significant difference between the actual Fisher Effect and the approximation. 8 -39

Factors Affecting Required Return o Default risk premium – remember bond ratings o Taxability Factors Affecting Required Return o Default risk premium – remember bond ratings o Taxability premium – remember municipal versus taxable o Liquidity premium – bonds that have more frequent trading will generally have lower required returns (remember bid-ask spreads) o Anything else that affects the risk of the cash flows to the bondholders will affect the required returns. 8 -40