Скачать презентацию Chapter 2 Application Layer A note on the Скачать презентацию Chapter 2 Application Layer A note on the

4da98be0669e2eecc58284c2c1292852.ppt

  • Количество слайдов: 114

Chapter 2 Application Layer A note on the use of these ppt slides: We’re Chapter 2 Application Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in Power. Point form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: q If you use these slides (e. g. , in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!) q If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Thanks and enjoy! JFK/KWR All material copyright 1996 -2009 J. F Kurose and K. W. Ross, All Rights Reserved 2: Application Layer 1

Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Web and HTTP r 2. 3 FTP r 2. 4 Electronic Mail v r 2. 6 P 2 P applications r 2. 7 Socket programming with TCP r 2. 8 Socket programming with UDP SMTP, POP 3, IMAP r 2. 5 DNS 2: Application Layer 2

Chapter 2: Application Layer Our goals: r conceptual, implementation aspects of network application protocols Chapter 2: Application Layer Our goals: r conceptual, implementation aspects of network application protocols v transport-layer service models v client-server paradigm v peer-to-peer paradigm r learn about protocols by examining popular application-level protocols v v HTTP FTP SMTP / POP 3 / IMAP DNS r programming network applications v socket API 2: Application Layer 3

Some network apps r e-mail r voice over IP r web r real-time video Some network apps r e-mail r voice over IP r web r real-time video r remote login conferencing r grid computing r P 2 P file sharing r r multi-user network r r instant messaging games r streaming stored video clips r 2: Application Layer 4

Creating a network app write programs that v v v run on (different) end Creating a network app write programs that v v v run on (different) end systems communicate over network e. g. , web server software communicates with browser software No need to write software for network-core devices v v Network-core devices do not run user applications on end systems allows for rapid app development, propagation application transport network data link physical 2: Application Layer 5

Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Web and HTTP r 2. 3 FTP r 2. 4 Electronic Mail v SMTP, POP 3, IMAP r 2. 5 DNS r 2. 6 P 2 P applications r 2. 7 Socket programming with TCP r 2. 8 Socket programming with UDP r 2. 9 Building a Web server 2: Application Layer 6

Application architectures r Client-server r Peer-to-peer (P 2 P) r Hybrid of client-server and Application architectures r Client-server r Peer-to-peer (P 2 P) r Hybrid of client-server and P 2 P 2: Application Layer 7

Client-server architecture server: v always-on host v permanent IP address v server farms for Client-server architecture server: v always-on host v permanent IP address v server farms for scaling clients: client/server v v communicate with server may be intermittently connected may have dynamic IP addresses do not communicate directly with each other 2: Application Layer 8

Pure P 2 P architecture r no always-on server r arbitrary end systems directly Pure P 2 P architecture r no always-on server r arbitrary end systems directly communicate peer-peer r peers are intermittently connected and change IP addresses Highly scalable but difficult to manage 2: Application Layer 9

Hybrid of client-server and P 2 P Skype v voice-over-IP P 2 P application Hybrid of client-server and P 2 P Skype v voice-over-IP P 2 P application v centralized server: finding address of remote party: v client-client connection: direct (not through server) Instant messaging v chatting between two users is P 2 P v centralized service: client presence detection/location • user registers its IP address with central server when it comes online • user contacts central server to find IP addresses of buddies 2: Application Layer 10

Processes communicating Process: program running within a host. r within same host, two processes Processes communicating Process: program running within a host. r within same host, two processes communicate using inter-process communication (defined by OS). r processes in different hosts communicate by exchanging messages Client process: process that initiates communication Server process: process that waits to be contacted r Note: applications with P 2 P architectures have client processes & server processes 2: Application Layer 11

Sockets r process sends/receives messages to/from its socket r socket analogous to door v Sockets r process sends/receives messages to/from its socket r socket analogous to door v v sending process shoves message out door sending process relies on transport infrastructure on other side of door which brings message to socket at receiving process host or server process controlled by app developer process socket TCP with buffers, variables Internet TCP with buffers, variables controlled by OS r API: (1) choice of transport protocol; (2) ability to fix a few parameters (lots more on this later) 2: Application Layer 12

Addressing processes r to receive messages, process must have identifier r host device has Addressing processes r to receive messages, process must have identifier r host device has unique 32 -bit IP address r Q: does IP address of host suffice for identifying the process? 2: Application Layer 13

Addressing processes r to receive messages, process must have identifier r host device has Addressing processes r to receive messages, process must have identifier r host device has unique 32 -bit IP address r Q: does IP address of host on which process runs suffice for identifying the process? v A: No, many processes can be running on same host r identifier includes both IP address and port numbers associated with process on host. r Example port numbers: v v HTTP server: 80 Mail server: 25 r to send HTTP message to gaia. cs. umass. edu web server: v v IP address: 128. 119. 245. 12 Port number: 80 r more shortly… 2: Application Layer 14

App-layer protocol defines r Types of messages exchanged, v e. g. , request, response App-layer protocol defines r Types of messages exchanged, v e. g. , request, response r Message syntax: v what fields in messages & how fields are delineated r Message semantics v meaning of information in fields Public-domain protocols: r defined in RFCs r allows for interoperability r e. g. , HTTP, SMTP Proprietary protocols: r e. g. , Skype r Rules for when and how processes send & respond to messages 2: Application Layer 15

What transport service does an app need? Data loss r some apps (e. g. What transport service does an app need? Data loss r some apps (e. g. , audio) can tolerate some loss r other apps (e. g. , file transfer, telnet) require 100% reliable data transfer Timing r some apps (e. g. , Internet telephony, interactive games) require low delay to be “effective” Throughput r some apps (e. g. , multimedia) require minimum amount of throughput to be “effective” r other apps (“elastic apps”) make use of whatever throughput they get Security r Encryption, data integrity, … 2: Application Layer 16

Transport service requirements of common apps Data loss Throughput Time Sensitive file transfer e-mail Transport service requirements of common apps Data loss Throughput Time Sensitive file transfer e-mail Web documents real-time audio/video no loss-tolerant no no no yes, 100’s msec stored audio/video interactive games instant messaging loss-tolerant no loss elastic audio: 5 kbps-1 Mbps video: 10 kbps-5 Mbps same as above few kbps up elastic Application yes, few secs yes, 100’s msec yes and no 2: Application Layer 17

Internet transport protocols services TCP service: r connection-oriented: setup r r required between client Internet transport protocols services TCP service: r connection-oriented: setup r r required between client and server processes reliable transport between sending and receiving process flow control: sender won’t overwhelm receiver congestion control: throttle sender when network overloaded does not provide: timing, minimum throughput guarantees, security UDP service: r unreliable data transfer between sending and receiving process r does not provide: connection setup, reliability, flow control, congestion control, timing, throughput guarantee, or security Q: why bother? Why is there a UDP? 2: Application Layer 18

Internet apps: application, transport protocols Application e-mail remote terminal access Web file transfer streaming Internet apps: application, transport protocols Application e-mail remote terminal access Web file transfer streaming multimedia Internet telephony Application layer protocol Underlying transport protocol SMTP [RFC 2821] Telnet [RFC 854] HTTP [RFC 2616] FTP [RFC 959] HTTP (eg Youtube), RTP [RFC 1889] SIP, RTP, proprietary (e. g. , Skype) TCP TCP TCP or UDP typically UDP 2: Application Layer 19

Chapter 2: Application layer r 2. 1 Principles of network applications v v app Chapter 2: Application layer r 2. 1 Principles of network applications v v app architectures app requirements r 2. 2 Web and HTTP r 2. 4 Electronic Mail v SMTP, POP 3, IMAP r 2. 6 P 2 P applications r 2. 7 Socket programming with TCP r 2. 8 Socket programming with UDP r 2. 5 DNS 2: Application Layer 20

Web and HTTP First some jargon r Web page consists of objects r Object Web and HTTP First some jargon r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file, … r Web page consists of base HTML-file which includes several referenced objects r Each object is addressable by a URL r Example URL: www. someschool. edu/some. Dept/pic. gif host name path name 2: Application Layer 21

HTTP overview HTTP: hypertext transfer protocol r Web’s application layer protocol r client/server model HTTP overview HTTP: hypertext transfer protocol r Web’s application layer protocol r client/server model v client: browser that requests, receives, “displays” Web objects v server: Web server sends objects in response to requests HT TP req ues PC running HT t TP res Explorer pon se st ue eq r se Server TP on p running HT res P T Apache Web HT server Mac running Navigator 2: Application Layer 22

HTTP overview (continued) Uses TCP: r client initiates TCP connection (creates socket) to server, HTTP overview (continued) Uses TCP: r client initiates TCP connection (creates socket) to server, port 80 r server accepts TCP connection from client r HTTP messages (applicationlayer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server) r TCP connection closed HTTP is “stateless” r server maintains no information about past client requests aside Protocols that maintain “state” are complex! r past history (state) must be maintained r if server/client crashes, their views of “state” may be inconsistent, must be reconciled 2: Application Layer 23

HTTP connections Nonpersistent HTTP r At most one object is sent over a TCP HTTP connections Nonpersistent HTTP r At most one object is sent over a TCP connection. Persistent HTTP r Multiple objects can be sent over single TCP connection between client and server. 2: Application Layer 24

Nonpersistent HTTP (contains text, Suppose user enters URL references to 10 www. some. School. Nonpersistent HTTP (contains text, Suppose user enters URL references to 10 www. some. School. edu/some. Department/home. index jpeg images) 1 a. HTTP client initiates TCP connection to HTTP server (process) at www. some. School. edu on port 80 2. HTTP client sends HTTP request message (containing URL) into TCP connection socket. Message indicates that client wants object some. Department/home. index 1 b. HTTP server at host www. some. School. edu waiting for TCP connection at port 80. “accepts” connection, notifying client 3. HTTP server receives request message, forms response message containing requested object, and sends message into its socket time 2: Application Layer 25

Nonpersistent HTTP (cont. ) 4. HTTP server closes TCP 5. HTTP client receives response Nonpersistent HTTP (cont. ) 4. HTTP server closes TCP 5. HTTP client receives response connection. message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects time 6. Steps 1 -5 repeated for each of 10 jpeg objects 2: Application Layer 26

Non-Persistent HTTP: Response time Definition of RTT: time for a small packet to travel Non-Persistent HTTP: Response time Definition of RTT: time for a small packet to travel from client to server and back. Response time: r one RTT to initiate TCP connection r one RTT for HTTP request and first few bytes of HTTP response to return r file transmission time total = 2 RTT+transmit time initiate TCP connection RTT request file RTT file received time to transmit file time 2: Application Layer 27

Persistent HTTP Nonpersistent HTTP issues: r requires 2 RTTs per object r OS overhead Persistent HTTP Nonpersistent HTTP issues: r requires 2 RTTs per object r OS overhead for each TCP connection r browsers often open parallel TCP connections to fetch referenced objects Persistent HTTP r server leaves connection open after sending response r subsequent HTTP messages between same client/server sent over open connection r client sends requests as soon as it encounters a referenced object r as little as one RTT for all the referenced objects 2: Application Layer 28

HTTP request message r two types of HTTP messages: request, response r HTTP request HTTP request message r two types of HTTP messages: request, response r HTTP request message: v ASCII (human-readable format) request line (GET, POST, HEAD commands) GET /somedir/page. html HTTP/1. 1 Host: www. someschool. edu User-agent: Mozilla/4. 0 header Connection: close lines Accept-language: fr Carriage return, line feed indicates end of message (extra carriage return, line feed) 2: Application Layer 29

HTTP request message: general format 2: Application Layer 30 HTTP request message: general format 2: Application Layer 30

Uploading form input Post method: r Web page often includes form input r Input Uploading form input Post method: r Web page often includes form input r Input is uploaded to server in entity body URL method: r Uses GET method r Input is uploaded in URL field of request line: www. somesite. com/animalsearch? monkeys&banana 2: Application Layer 31

Method types HTTP/1. 0 r GET r POST r HEAD v asks server to Method types HTTP/1. 0 r GET r POST r HEAD v asks server to leave requested object out of response HTTP/1. 1 r GET, POST, HEAD r PUT v uploads file in entity body to path specified in URL field HTTP/1. 1 r DELETE v deletes file specified in the URL field r TRACE v Echoes request msg from server r OPTIONS v Returns HTTP methods that the server supports r CONNECT v TCP/IP tunnel for HTTP 2: Application Layer 32

HTTP response message status line (protocol status code status phrase) header lines data, e. HTTP response message status line (protocol status code status phrase) header lines data, e. g. , requested HTML file HTTP/1. 1 200 OK Connection close Date: Thu, 06 Aug 1998 12: 00: 15 GMT Server: Apache/1. 3. 0 (Unix) Last-Modified: Mon, 22 Jun 1998 …. . . Content-Length: 6821 Content-Type: text/html data data. . . 2: Application Layer 33

HTTP response status codes In first line in server->client response message. A few sample HTTP response status codes In first line in server->client response message. A few sample codes: 200 OK v request succeeded, requested object later in this message 301 Moved Permanently v requested object moved, new location specified later in this message (Location: ) 400 Bad Request v request message not understood by server 404 Not Found v requested document not found on this server 505 HTTP Version Not Supported 2: Application Layer 34

Trying out HTTP (client side) for yourself 1. Telnet to your favorite Web server: Trying out HTTP (client side) for yourself 1. Telnet to your favorite Web server: telnet cis. poly. edu 80 Opens TCP connection to port 80 (default HTTP server port) at cis. poly. edu. Anything typed in sent to port 80 at cis. poly. edu 2. Type in a GET HTTP request: GET /~ross/ HTTP/1. 1 Host: cis. poly. edu By typing this in (hit carriage return twice), you send this minimal (but complete) GET request to HTTP server 3. Look at response message sent by HTTP server! 2: Application Layer 35

User-server state: cookies Example: r Susan always access Internet always from PC r visits User-server state: cookies Example: r Susan always access Internet always from PC r visits specific e 1) cookie header line of HTTP response message commerce site for first 2) cookie header line in time HTTP request message r when initial HTTP 3) cookie file kept on user’s host, managed by requests arrives at site, user’s browser site creates: 4) back-end database at v unique ID Web site v entry in backend database for ID Many major Web sites use cookies Four components: 2: Application Layer 36

Cookies: keeping “state” (cont. ) client ebay 8734 cookie file ebay 8734 amazon 1678 Cookies: keeping “state” (cont. ) client ebay 8734 cookie file ebay 8734 amazon 1678 server usual http request msg usual http response Set-cookie: 1678 usual http request msg cookie: 1678 one week later: usual http response msg Amazon server creates ID 1678 for user create entry cookiespecific action access ebay 8734 amazon 1678 usual http request msg cookie: 1678 usual http response msg backend database cookiespectific action 2: Application Layer 37

Cookies (continued) What cookies can bring: r authorization r shopping carts r recommendations r Cookies (continued) What cookies can bring: r authorization r shopping carts r recommendations r user session state (Web e-mail) aside Cookies and privacy: r cookies permit sites to learn a lot about you r you may supply name and e-mail to sites How to keep “state”: r protocol endpoints: maintain state at sender/receiver over multiple transactions r cookies: http messages carry state 2: Application Layer 38

Web caches (proxy server) Goal: satisfy client request without involving origin server r user Web caches (proxy server) Goal: satisfy client request without involving origin server r user sets browser: Web accesses via cache r browser sends all HTTP requests to cache v v object in cache: cache returns object else cache requests object from origin server, then returns object to client origin server HT client. HTTP TP req ues Proxy server t res pon se t es qu e se Pr on T p HT res P TT H client st que re se TP pon HT es Pr T HT origin server 2: Application Layer 39

More about Web caching r cache acts as both client and server r typically More about Web caching r cache acts as both client and server r typically cache is installed by ISP (university, company, residential ISP) Why Web caching? r reduce response time for client request r reduce traffic on an institution’s access link. r Internet dense with caches: enables “poor” content providers to effectively deliver content (but so does P 2 P file sharing) 2: Application Layer 40

Caching example origin servers Assumptions r average object size = 100, 000 bits r Caching example origin servers Assumptions r average object size = 100, 000 bits r avg. request rate from institution’s browsers to origin servers = 15/sec r delay from institutional router to any origin server and back to router = 2 sec Consequences public Internet 1. 5 Mbps access link institutional network 10 Mbps LAN r utilization on LAN = 15% r utilization on access link = 100% r total delay = Internet delay + access delay + LAN delay = 2 sec + minutes + milliseconds institutional cache 2: Application Layer 41

Caching example (cont) origin servers possible solution r increase bandwidth of access link to, Caching example (cont) origin servers possible solution r increase bandwidth of access link to, say, 10 Mbps consequence public Internet r utilization on LAN = 15% r utilization on access link = 15% = Internet delay + access delay + LAN delay = 2 sec + msecs r often a costly upgrade 10 Mbps access link r Total delay institutional network 10 Mbps LAN institutional cache 2: Application Layer 42

Caching example (cont) possible solution: install cache r suppose hit rate is 0. 4 Caching example (cont) possible solution: install cache r suppose hit rate is 0. 4 consequence origin servers public Internet r 40% requests will be satisfied almost immediately r 60% requests satisfied by origin server r utilization of access link reduced to 60%, resulting in negligible delays (say 10 msec) r total avg delay = Internet delay + access delay + LAN delay =. 6*(2. 01) secs +. 4*milliseconds < 1. 4 secs 1. 5 Mbps access link institutional network 10 Mbps LAN institutional cache 2: Application Layer 43

Conditional GET r Goal: don’t send object if cache has up-to-date cached version r Conditional GET r Goal: don’t send object if cache has up-to-date cached version r cache: specify date of cached copy in HTTP request If-modified-since: r server: response contains no object if cached copy is up-to -date: HTTP/1. 0 304 Not Modified server cache HTTP request msg If-modified-since: HTTP response object not modified HTTP/1. 0 304 Not Modified HTTP request msg If-modified-since: HTTP response object modified HTTP/1. 0 200 OK 2: Application Layer 44

Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Web and HTTP r 2. 3 FTP r 2. 4 Electronic Mail v SMTP, POP 3, IMAP r 2. 5 DNS r 2. 6 P 2 P applications r 2. 7 Socket programming with TCP r 2. 8 Socket programming with UDP r 2. 9 Building a Web server 2: Application Layer 45

FTP: the file transfer protocol user at host FTP user client interface file transfer FTP: the file transfer protocol user at host FTP user client interface file transfer local file system FTP server remote file system r transfer file to/from remote host r client/server model client: side that initiates transfer (either to/from remote) v server: remote host r ftp: RFC 959 r ftp server: port 21 v 2: Application Layer 46

FTP: separate control, data connections r FTP client contacts FTP server r r TCP FTP: separate control, data connections r FTP client contacts FTP server r r TCP control connection port 21 at port 21, TCP is transport protocol TCP data connection FTP port 20 client authorized over control client server connection client browses remote r server opens another TCP directory by sending commands data connection to transfer over control connection. another file. when server receives file r control connection: “out of transfer command, server band” opens 2 nd TCP connection (for r FTP server maintains “state”: file) to client current directory, earlier after transferring one file, authentication server closes data connection. 2: Application Layer 47

FTP commands, responses Sample commands: Sample return codes r sent as ASCII text over FTP commands, responses Sample commands: Sample return codes r sent as ASCII text over r status code and phrase (as control channel r USER username r PASS password r LIST return list of file in r r current directory r RETR filename retrieves r r STOR filename stores r (gets) file (puts) file onto remote host in HTTP) 331 Username OK, password required 125 data connection already open; transfer starting 425 Can’t open data connection 452 Error writing file 2: Application Layer 48

Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Web and HTTP r 2. 3 FTP r 2. 4 Electronic Mail v r 2. 6 P 2 P applications r 2. 7 Socket programming with TCP r 2. 8 Socket programming with UDP SMTP, POP 3, IMAP r 2. 5 DNS 2: Application Layer 49

Electronic Mail outgoing message queue user mailbox user agent Three major components: r user Electronic Mail outgoing message queue user mailbox user agent Three major components: r user agents r mail servers mail server SMTP r simple mail transfer protocol: SMTP User Agent r a. k. a. “mail reader” r composing, editing, reading mail messages r e. g. , Eudora, Outlook, elm, Mozilla Thunderbird r outgoing, incoming messages stored on server SMTP mail server user agent SMTP user agent mail server user agent 2: Application Layer 50

Electronic Mail: mail servers user agent Mail Servers r mailbox contains incoming messages for Electronic Mail: mail servers user agent Mail Servers r mailbox contains incoming messages for user r message queue of outgoing (to be sent) mail messages r SMTP protocol between mail servers to send email messages v client: sending mail server v “server”: receiving mail server SMTP mail server user agent SMTP user agent mail server user agent 2: Application Layer 51

Electronic Mail: SMTP [RFC 2821] r uses TCP to reliably transfer email message from Electronic Mail: SMTP [RFC 2821] r uses TCP to reliably transfer email message from client to server, port 25 r direct transfer: sending server to receiving server r three phases of transfer v handshaking (greeting) v transfer of messages v closure r command/response interaction v commands: ASCII text v response: status code and phrase r messages must be in 7 -bit ASCII 2: Application Layer 52

Scenario: Alice sends message to Bob 4) SMTP client sends Alice’s message over the Scenario: Alice sends message to Bob 4) SMTP client sends Alice’s message over the TCP connection 5) Bob’s mail server places the message in Bob’s mailbox 6) Bob invokes his user agent to read message 1) Alice uses UA to compose message and “to” [email protected] edu 2) Alice’s UA sends message to her mail server; message placed in message queue 3) Client side of SMTP opens TCP connection with Bob’s mail server 1 user agent 2 mail server 3 mail server 4 5 6 user agent 2: Application Layer 53

Sample SMTP interaction S: C: S: C: C: C: S: 220 hamburger. edu HELO Sample SMTP interaction S: C: S: C: C: C: S: 220 hamburger. edu HELO crepes. fr 250 Hello crepes. fr, pleased to meet you MAIL FROM: 250 [email protected] fr. . . Sender ok RCPT TO: 250 [email protected] edu. . . Recipient ok DATA 354 Enter mail, end with ". " on a line by itself Do you like ketchup? How about pickles? . 250 Message accepted for delivery QUIT 221 hamburger. edu closing connection 2: Application Layer 54

Try SMTP interaction for yourself: r telnet servername 25 r see 220 reply from Try SMTP interaction for yourself: r telnet servername 25 r see 220 reply from server r enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands above lets you send email without using email client (reader) 2: Application Layer 55

SMTP: final words r SMTP uses persistent connections r SMTP requires message (header & SMTP: final words r SMTP uses persistent connections r SMTP requires message (header & body) to be in 7 bit ASCII r SMTP server uses CRLF to determine end of message Comparison with HTTP: r HTTP: pull r SMTP: push r both have ASCII command/response interaction, status codes r HTTP: each object encapsulated in its own response msg r SMTP: multiple objects sent in multipart msg 2: Application Layer 56

Mail message format SMTP: protocol for exchanging email msgs RFC 822: standard for text Mail message format SMTP: protocol for exchanging email msgs RFC 822: standard for text message format: r header lines, e. g. , To: v From: v Subject: different from SMTP commands! v header blank line body r body v the “message”, ASCII characters only 2: Application Layer 57

Mail access protocols user agent SMTP sender’s mail server access protocol user agent receiver’s Mail access protocols user agent SMTP sender’s mail server access protocol user agent receiver’s mail server r SMTP: delivery/storage to receiver’s server r Mail access protocol: retrieval from server v v v POP: Post Office Protocol [RFC 1939] • authorization (agent <-->server) and download IMAP: Internet Mail Access Protocol [RFC 1730] • more features (more complex) • manipulation of stored msgs on server HTTP: gmail, Hotmail, Yahoo! Mail, etc. 2: Application Layer 58

POP 3 protocol authorization phase r client commands: v v user: declare username pass: POP 3 protocol authorization phase r client commands: v v user: declare username pass: password r server responses v v +OK -ERR transaction phase, client: r list: list message numbers r retr: retrieve message by number r dele: delete r quit S: C: S: +OK POP 3 server ready user bob +OK pass hungry +OK user successfully logged C: S: S: S: C: C: S: list 1 498 2 912. retr 1 . dele 1 retr 2 . dele 2 quit +OK POP 3 server signing off 2: Application Layer 59 on

POP 3 (more) and IMAP More about POP 3 r Previous example uses “download POP 3 (more) and IMAP More about POP 3 r Previous example uses “download and delete” mode. r Bob cannot re-read email if he changes client r “Download-and-keep”: copies of messages on different clients r POP 3 is stateless across sessions IMAP r Keep all messages in one place: the server r Allows user to organize messages in folders r IMAP keeps user state across sessions: v names of folders and mappings between message IDs and folder name 2: Application Layer 60

Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Web and HTTP r 2. 3 FTP r 2. 4 Electronic Mail v SMTP, POP 3, IMAP r 2. 5 DNS r 2. 6 P 2 P applications r 2. 7 Socket programming with TCP r 2. 8 Socket programming with UDP r 2. 9 Building a Web server 2: Application Layer 61

DNS: Domain Name System People: many identifiers: v SSN, name, passport # Internet hosts, DNS: Domain Name System People: many identifiers: v SSN, name, passport # Internet hosts, routers: v v IP address (32 bit) used for addressing datagrams “name”, e. g. , ww. yahoo. com - used by humans Q: map between IP addresses and name ? Domain Name System: r distributed database implemented in hierarchy of many name servers r application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation) v note: core Internet function, implemented as application-layer protocol v complexity at network’s “edge” 2: Application Layer 62

DNS services r hostname to IP address translation r host aliasing v Canonical, alias DNS services r hostname to IP address translation r host aliasing v Canonical, alias names r mail server aliasing r load distribution v replicated Web servers: set of IP addresses for one canonical name Why not centralize DNS? r single point of failure r traffic volume r distant centralized database r maintenance doesn’t scale! 2: Application Layer 63

Distributed, Hierarchical Database Root DNS Servers com DNS servers yahoo. com amazon. com DNS Distributed, Hierarchical Database Root DNS Servers com DNS servers yahoo. com amazon. com DNS servers org DNS servers pbs. org DNS servers edu DNS servers poly. edu umass. edu DNS servers Client wants IP for www. amazon. com; 1 st approx: r client queries a root server to find com DNS server r client queries com DNS server to get amazon. com DNS server r client queries amazon. com DNS server to get IP address for www. amazon. com 2: Application Layer 64

DNS: Root name servers r contacted by local name server that can not resolve DNS: Root name servers r contacted by local name server that can not resolve name r root name server: v v v contacts authoritative name server if name mapping not known gets mapping returns mapping to local name server a Verisign, Dulles, VA c Cogent, Herndon, VA (also LA) d U Maryland College Park, MD g US Do. D Vienna, VA h ARL Aberdeen, MD j Verisign, ( 21 locations) e NASA Mt View, CA f Internet Software C. Palo Alto, k RIPE London (also 16 other locations) i Autonomica, Stockholm (plus 28 other locations) m WIDE Tokyo (also Seoul, Paris, SF) CA (and 36 other locations) 13 root name servers worldwide b USC-ISI Marina del Rey, CA l ICANN Los Angeles, CA 2: Application Layer 65

TLD and Authoritative Servers r Top-level domain (TLD) servers: v responsible for com, org, TLD and Authoritative Servers r Top-level domain (TLD) servers: v responsible for com, org, net, edu, etc, and all top -level country domains uk, fr, ca, jp. v Network Solutions maintains servers for com TLD v Educause for edu TLD r Authoritative DNS servers: v organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e. g. , Web, mail). v can be maintained by organization or service provider 2: Application Layer 66

Local Name Server r does not strictly belong to hierarchy r each ISP (residential Local Name Server r does not strictly belong to hierarchy r each ISP (residential ISP, company, university) has one. v also called “default name server” r when host makes DNS query, query is sent to its local DNS server v acts as proxy, forwards query into hierarchy 2: Application Layer 67

DNS name resolution example root DNS server 2 r Host at cis. poly. edu DNS name resolution example root DNS server 2 r Host at cis. poly. edu wants IP address for gaia. cs. umass. edu iterated query: r contacted server replies with name of server to contact r “I don’t know this name, but ask this server” 3 4 TLD DNS server 5 local DNS server dns. poly. edu 1 8 requesting host 7 6 authoritative DNS server dns. cs. umass. edu cis. poly. edu gaia. cs. umass. edu 2: Application Layer 68

DNS name resolution example recursive query: root DNS server 2 r puts burden of DNS name resolution example recursive query: root DNS server 2 r puts burden of name resolution on contacted name server r heavy load? 3 7 local DNS server dns. poly. edu 1 6 TLD DNS server 5 4 8 requesting host authoritative DNS server dns. cs. umass. edu cis. poly. edu gaia. cs. umass. edu 2: Application Layer 69

DNS: caching and updating records r once (any) name server learns mapping, it caches DNS: caching and updating records r once (any) name server learns mapping, it caches mapping v cache entries timeout (disappear) after some time v TLD servers typically cached in local name servers • Thus root name servers not often visited r update/notify mechanisms under design by IETF v RFC 2136 v http: //www. ietf. org/html. charters/dnsind-charter. html 2: Application Layer 70

DNS records DNS: distributed db storing resource records (RR) RR format: (name, value, type, DNS records DNS: distributed db storing resource records (RR) RR format: (name, value, type, ttl) r Type=A v name is hostname v value is IP address r Type=CNAME v name is alias name for some “canonical” (the real) name www. ibm. com is really r Type=NS servereast. backup 2. ibm. com v name is domain (e. g. v value is canonical name foo. com) v value is hostname of r Type=MX authoritative name server v value is name of mailserver for this domain associated with name 2: Application Layer 71

DNS protocol, messages DNS protocol : query and reply messages, both with same message DNS protocol, messages DNS protocol : query and reply messages, both with same message format msg header r identification: 16 bit # for query, reply to query uses same # r flags: v query or reply v recursion desired v recursion available v reply is authoritative 2: Application Layer 72

DNS protocol, messages Name, type fields for a query RRs in response to query DNS protocol, messages Name, type fields for a query RRs in response to query records for authoritative servers additional “helpful” info that may be used 2: Application Layer 73

Inserting records into DNS r example: new startup “Network Utopia” r register name networkuptopia. Inserting records into DNS r example: new startup “Network Utopia” r register name networkuptopia. com at DNS registrar (e. g. , Network Solutions) v v provide names, IP addresses of authoritative name server (primary and secondary) registrar inserts two RRs into com TLD server: (networkutopia. com, dns 1. networkutopia. com, NS) (dns 1. networkutopia. com, 212. 1, A) r create authoritative server Type A record for www. networkuptopia. com; Type MX record for networkutopia. com r How do people get IP address of your Web site? 2: Application Layer 74

Chapter 2: Application layer r 2. 1 Principles of network applications v v app Chapter 2: Application layer r 2. 1 Principles of network applications v v app architectures app requirements r 2. 2 Web and HTTP r 2. 4 Electronic Mail v SMTP, POP 3, IMAP r 2. 6 P 2 P applications r 2. 7 Socket programming with TCP r 2. 8 Socket programming with UDP r 2. 5 DNS 2: Application Layer 75

Pure P 2 P architecture r no always-on server r arbitrary end systems directly Pure P 2 P architecture r no always-on server r arbitrary end systems directly communicate peer-peer r peers are intermittently connected and change IP addresses r Three topics: v File distribution v Searching for information v Case Study: Skype 2: Application Layer 76

File Distribution: Server-Client vs P 2 P Question : How much time to distribute File Distribution: Server-Client vs P 2 P Question : How much time to distribute file from one server to N peers? us: server upload bandwidth Server us File, size F d. N u 1 d 1 u 2 ui: peer i upload bandwidth d 2 di: peer i download bandwidth Network (with abundant bandwidth) 2: Application Layer 77

File distribution time: server-client r server sequentially sends N copies: v NF/us time r File distribution time: server-client r server sequentially sends N copies: v NF/us time r client i takes F/di time to download Server F us d. N u 1 d 1 u 2 d 2 Network (with abundant bandwidth) Time to distribute F to N clients using = dcs = max { NF/us, F/min(di) } i client/server approach increases linearly in N (for large N) 2: Application Layer 78

File distribution time: P 2 P r server must send one Server F u File distribution time: P 2 P r server must send one Server F u 1 d 1 u 2 d 2 copy: F/us time us r client i takes F/di time Network (with d. N to download abundant bandwidth) u. N r NF bits must be downloaded (aggregate) r fastest possible upload rate: us + Sui d. P 2 P = max { F/us, F/min(di) , NF/(us + i S ui ) } 2: Application Layer 79

Server-client vs. P 2 P: example Client upload rate = u, F/u = 1 Server-client vs. P 2 P: example Client upload rate = u, F/u = 1 hour, us = 10 u, dmin ≥ us 2: Application Layer 80

File distribution: Bit. Torrent r P 2 P file distribution tracker: tracks peers participating File distribution: Bit. Torrent r P 2 P file distribution tracker: tracks peers participating in torrent: group of peers exchanging chunks of a file obtain list of peers trading chunks peer 2: Application Layer 81

Bit. Torrent (1) r file divided into 256 KB chunks. r peer joining torrent: Bit. Torrent (1) r file divided into 256 KB chunks. r peer joining torrent: has no chunks, but will accumulate them over time v registers with tracker to get list of peers, connects to subset of peers (“neighbors”) r while downloading, peer uploads chunks to other peers may come and go r once peer has entire file, it may (selfishly) leave or (altruistically) remain v 2: Application Layer 82

Bit. Torrent (2) Sending Chunks: tit-for-tat r Alice sends chunks to four Pulling Chunks Bit. Torrent (2) Sending Chunks: tit-for-tat r Alice sends chunks to four Pulling Chunks neighbors currently r at any given time, sending her chunks at the different peers have highest rate different subsets of v re-evaluate top 4 every file chunks 10 secs r periodically, a peer r every 30 secs: randomly (Alice) asks each select another peer, neighbor for list of starts sending chunks that they have. v newly chosen peer may r Alice sends requests for join top 4 her missing chunks v “optimistically unchoke” v rarest first 2: Application Layer 83

Bit. Torrent: Tit-for-tat (1) Alice “optimistically unchokes” Bob (2) Alice becomes one of Bob’s Bit. Torrent: Tit-for-tat (1) Alice “optimistically unchokes” Bob (2) Alice becomes one of Bob’s top-four providers; Bob reciprocates (3) Bob becomes one of Alice’s top-four providers With higher upload rate, can find better trading partners & get file faster! 2: Application Layer 84

Distributed Hash Table (DHT) r DHT = distributed P 2 P database r Database Distributed Hash Table (DHT) r DHT = distributed P 2 P database r Database has (key, value) pairs; v key: ss number; value: human name v key: content type; value: IP address r Peers query DB with key v DB returns values that match the key r Peers can also insert (key, value) peers

DHT Identifiers r Assign integer identifier to each peer in range [0, 2 n-1]. DHT Identifiers r Assign integer identifier to each peer in range [0, 2 n-1]. v Each identifier can be represented by n bits. r Require each key to be an integer in same range. r To get integer keys, hash original key. v eg, key = h(“Led Zeppelin IV”) v This is why they call it a distributed “hash” table

How to assign keys to peers? r Central issue: v Assigning (key, value) pairs How to assign keys to peers? r Central issue: v Assigning (key, value) pairs to peers. r Rule: assign key to the peer that has the closest ID. r Convention in lecture: closest is the immediate successor of the key. r Ex: n=4; peers: 1, 3, 4, 5, 8, 10, 12, 14; key = 13, then successor peer = 14 v key = 15, then successor peer = 1 v

Circular DHT (1) 1 3 15 4 12 5 10 8 r Each peer Circular DHT (1) 1 3 15 4 12 5 10 8 r Each peer only aware of immediate successor and predecessor. r “Overlay network”

Circle DHT (2) O(N) messages on avg to resolve query, when there are N Circle DHT (2) O(N) messages on avg to resolve query, when there are N peers 0001 I am Who’s resp 0011 for key 1110 1111 1110 0100 1110 1100 1110 Define closest as closest successor 1010 1110 1000 0101 ?

Circular DHT with Shortcuts 1 3 15 Who’s resp for key 1110? 4 12 Circular DHT with Shortcuts 1 3 15 Who’s resp for key 1110? 4 12 5 10 8 r Each peer keeps track of IP addresses of predecessor, successor, short cuts. r Reduced from 6 to 2 messages. r Possible to design shortcuts so O(log N) neighbors, O(log N) messages in query

Peer Churn 1 • To handle peer churn, require 3 15 4 12 5 Peer Churn 1 • To handle peer churn, require 3 15 4 12 5 10 each peer to know the IP address of its two successors. • Each peer periodically pings its two successors to see if they are still alive. 8 r Peer 5 abruptly leaves r Peer 4 detects; makes 8 its immediate successor; asks 8 who its immediate successor is; makes 8’s immediate successor its second successor. r What if peer 13 wants to join?

P 2 P Case study: Skype clients (SC) r inherently P 2 P: pairs P 2 P Case study: Skype clients (SC) r inherently P 2 P: pairs of users communicate. r proprietary application Skype login server -layer protocol (inferred via reverse engineering) r hierarchical overlay with SNs r Index maps usernames to IP addresses; distributed over SNs Supernode (SN) 2: Application Layer 92

Peers as relays r Problem when both Alice and Bob are behind “NATs”. v Peers as relays r Problem when both Alice and Bob are behind “NATs”. v NAT prevents an outside peer from initiating a call to insider peer r Solution: v Using Alice’s and Bob’s SNs, Relay is chosen v Each peer initiates session with relay. v Peers can now communicate through NATs via relay 2: Application Layer 93

Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Web and HTTP r 2. 3 FTP r 2. 4 Electronic Mail v r 2. 6 P 2 P applications r 2. 7 Socket programming with TCP r 2. 8 Socket programming with UDP SMTP, POP 3, IMAP r 2. 5 DNS 2: Application Layer 94

Socket programming Goal: learn how to build client/server application that communicate using sockets Socket Socket programming Goal: learn how to build client/server application that communicate using sockets Socket API r introduced in BSD 4. 1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of transport service via socket API: v unreliable datagram v reliable, byte streamoriented socket a host-local, application-created, OS-controlled interface (a “door”) into which application process can both send and receive messages to/from another application process 2: Application Layer 95

Socket-programming using TCP Socket: a door between application process and endend-transport protocol (UCP or Socket-programming using TCP Socket: a door between application process and endend-transport protocol (UCP or TCP) TCP service: reliable transfer of bytes from one process to another controlled by application developer controlled by operating system process socket TCP with buffers, variables host or server internet socket TCP with buffers, variables controlled by application developer controlled by operating system host or server 2: Application Layer 96

Socket programming with TCP Client must contact server r server process must first be Socket programming with TCP Client must contact server r server process must first be running r server must have created socket (door) that welcomes client’s contact Client contacts server by: r creating client-local TCP socket r specifying IP address, port number of server process r When client creates socket: client TCP establishes connection to server TCP r When contacted by client, server TCP creates new socket for server process to communicate with client v allows server to talk with multiple clients v source port numbers used to distinguish clients (more in Chap 3) application viewpoint TCP provides reliable, in-order transfer of bytes (“pipe”) between client and server 2: Application Layer 97

Client/server socket interaction: TCP Server Client (running on hostid) create socket, port=x, for incoming Client/server socket interaction: TCP Server Client (running on hostid) create socket, port=x, for incoming request: welcome. Socket = Server. Socket() TCP wait for incoming connection request connection. Socket = welcome. Socket. accept() read request from connection. Socket write reply to connection. Socket close connection. Socket setup create socket, connect to hostid, port=x client. Socket = Socket() send request using client. Socket read reply from client. Socket close client. Socket 2: Application Layer 98

Stream jargon r A stream is a sequence of characters that flow into or Stream jargon r A stream is a sequence of characters that flow into or out of a process. r An input stream is attached to some input source for the process, e. g. , keyboard or socket. r An output stream is attached to an output source, e. g. , monitor or socket. Client process client TCP socket 2: Application Layer 99

Socket programming with TCP Example client-server app: 1) client reads line from standard input Socket programming with TCP Example client-server app: 1) client reads line from standard input (in. From. User stream) , sends to server via socket (out. To. Server stream) 2) server reads line from socket 3) server converts line to uppercase, sends back to client 4) client reads, prints modified line from socket (in. From. Server stream) 2: Application Layer 100

Example: Java client (TCP) import java. io. *; import java. net. *; class TCPClient Example: Java client (TCP) import java. io. *; import java. net. *; class TCPClient { public static void main(String argv[]) throws Exception { String sentence; String modified. Sentence; Create input stream Create client socket, connect to server Create output stream attached to socket Buffered. Reader in. From. User = new Buffered. Reader(new Input. Stream. Reader(System. in)); Socket client. Socket = new Socket("hostname", 6789); Data. Output. Stream out. To. Server = new Data. Output. Stream(client. Socket. get. Output. Stream()); 2: Application Layer 101

Example: Java client (TCP), cont. Create input stream attached to socket Buffered. Reader in. Example: Java client (TCP), cont. Create input stream attached to socket Buffered. Reader in. From. Server = new Buffered. Reader(new Input. Stream. Reader(client. Socket. get. Input. Stream())); sentence = in. From. User. read. Line(); Send line to server out. To. Server. write. Bytes(sentence + 'n'); Read line from server modified. Sentence = in. From. Server. read. Line(); System. out. println("FROM SERVER: " + modified. Sentence); client. Socket. close(); } } 2: Application Layer 102

Example: Java server (TCP) import java. io. *; import java. net. *; class TCPServer Example: Java server (TCP) import java. io. *; import java. net. *; class TCPServer { Create welcoming socket at port 6789 Wait, on welcoming socket for contact by client Create input stream, attached to socket public static void main(String argv[]) throws Exception { String client. Sentence; String capitalized. Sentence; Server. Socket welcome. Socket = new Server. Socket(6789); while(true) { Socket connection. Socket = welcome. Socket. accept(); Buffered. Reader in. From. Client = new Buffered. Reader(new Input. Stream. Reader(connection. Socket. get. Input. Stream())); 2: Application Layer 103

Example: Java server (TCP), cont Create output stream, attached to socket Data. Output. Stream Example: Java server (TCP), cont Create output stream, attached to socket Data. Output. Stream out. To. Client = new Data. Output. Stream(connection. Socket. get. Output. Stream()); Read in line from socket client. Sentence = in. From. Client. read. Line(); capitalized. Sentence = client. Sentence. to. Upper. Case() + 'n'; Write out line to socket out. To. Client. write. Bytes(capitalized. Sentence); } } } End of while loop, loop back and wait for another client connection 2: Application Layer 104

Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Chapter 2: Application layer r 2. 1 Principles of network applications r 2. 2 Web and HTTP r 2. 3 FTP r 2. 4 Electronic Mail v r 2. 6 P 2 P applications r 2. 7 Socket programming with TCP r 2. 8 Socket programming with UDP SMTP, POP 3, IMAP r 2. 5 DNS 2: Application Layer 105

Socket programming with UDP: no “connection” between client and server r no handshaking r Socket programming with UDP: no “connection” between client and server r no handshaking r sender explicitly attaches IP address and port of destination to each packet r server must extract IP address, port of sender from received packet application viewpoint UDP provides unreliable transfer of groups of bytes (“datagrams”) between client and server UDP: transmitted data may be received out of order, or lost 2: Application Layer 106

Client/server socket interaction: UDP Server (running on hostid) create socket, port= x. server. Socket Client/server socket interaction: UDP Server (running on hostid) create socket, port= x. server. Socket = Datagram. Socket() read datagram from server. Socket write reply to server. Socket specifying client address, port number Client create socket, client. Socket = Datagram. Socket() Create datagram with server IP and port=x; send datagram via client. Socket read datagram from client. Socket close client. Socket 2: Application Layer 107

Example: Java client (UDP) Client process Input: receives packet (recall that. TCP received “byte Example: Java client (UDP) Client process Input: receives packet (recall that. TCP received “byte stream”) Output: sends packet (recall that TCP sent “byte stream”) client UDP socket 2: Application Layer 108

Example: Java client (UDP) import java. io. *; import java. net. *; Create input Example: Java client (UDP) import java. io. *; import java. net. *; Create input stream Create client socket Translate hostname to IP address using DNS class UDPClient { public static void main(String args[]) throws Exception { Buffered. Reader in. From. User = new Buffered. Reader(new Input. Stream. Reader(System. in)); Datagram. Socket client. Socket = new Datagram. Socket(); Inet. Address IPAddress = Inet. Address. get. By. Name("hostname"); byte[] send. Data = new byte[1024]; byte[] receive. Data = new byte[1024]; String sentence = in. From. User. read. Line(); send. Data = sentence. get. Bytes(); 2: Application Layer 109

Example: Java client (UDP), cont. Create datagram with data-to-send, length, IP addr, port Send Example: Java client (UDP), cont. Create datagram with data-to-send, length, IP addr, port Send datagram to server Datagram. Packet send. Packet = new Datagram. Packet(send. Data, send. Data. length, IPAddress, 9876); client. Socket. send(send. Packet); Datagram. Packet receive. Packet = new Datagram. Packet(receive. Data, receive. Data. length); Read datagram from server client. Socket. receive(receive. Packet); String modified. Sentence = new String(receive. Packet. get. Data()); System. out. println("FROM SERVER: " + modified. Sentence); client. Socket. close(); } } 2: Application Layer 110

Example: Java server (UDP) import java. io. *; import java. net. *; Create datagram Example: Java server (UDP) import java. io. *; import java. net. *; Create datagram socket at port 9876 class UDPServer { public static void main(String args[]) throws Exception { Datagram. Socket server. Socket = new Datagram. Socket(9876); byte[] receive. Data = new byte[1024]; byte[] send. Data = new byte[1024]; while(true) { Create space for received datagram Receive datagram Datagram. Packet receive. Packet = new Datagram. Packet(receive. Data, receive. Data. length); server. Socket. receive(receive. Packet); 2: Application Layer 111

Example: Java server (UDP), cont String sentence = new String(receive. Packet. get. Data()); Get Example: Java server (UDP), cont String sentence = new String(receive. Packet. get. Data()); Get IP addr port #, of sender Inet. Address IPAddress = receive. Packet. get. Address(); int port = receive. Packet. get. Port(); String capitalized. Sentence = sentence. to. Upper. Case(); send. Data = capitalized. Sentence. get. Bytes(); Create datagram to send to client Write out datagram to socket } Datagram. Packet send. Packet = new Datagram. Packet(send. Data, send. Data. length, IPAddress, port); server. Socket. send(send. Packet); } } End of while loop, loop back and wait for another datagram 2: Application Layer 112

Chapter 2: Summary our study of network apps now complete! r application architectures v Chapter 2: Summary our study of network apps now complete! r application architectures v client-server v P 2 P v hybrid r application service requirements: v reliability, bandwidth, delay r specific protocols: v HTTP v FTP v SMTP, POP, IMAP v DNS v P 2 P: Bit. Torrent, Skype r socket programming r Internet transport service model v v connection-oriented, reliable: TCP unreliable, datagrams: UDP 2: Application Layer 113

Chapter 2: Summary Most importantly: learned about protocols r typical request/reply message exchange: v Chapter 2: Summary Most importantly: learned about protocols r typical request/reply message exchange: v v client requests info or service server responds with data, status code r message formats: v headers: fields giving info about data v data: info being communicated Important themes: r control vs. data msgs v in-band, out-of-band r centralized vs. decentralized r stateless vs. stateful r reliable vs. unreliable msg transfer r “complexity at network edge” 2: Application Layer 114