Скачать презентацию 15 -213 The course that gives CMU its Скачать презентацию 15 -213 The course that gives CMU its

fba24c6574d7e7f1d886020d23602e3d.ppt

  • Количество слайдов: 38

15 -213 “The course that gives CMU its Zip!” Machine-Level Programming V: Miscellaneous Topics 15 -213 “The course that gives CMU its Zip!” Machine-Level Programming V: Miscellaneous Topics Feb 10, 2004 Topics Linux Memory Layout n Understanding Pointers n Buffer Overflow n n class 09. ppt Floating Point Code

Red Hat FF v. 6. 2 ~1920 MB memory limit C 0 BF Linux Red Hat FF v. 6. 2 ~1920 MB memory limit C 0 BF Linux Memory Layout Stack n Stack Heap n Upper 2 hex 80 digits of 7 F address 40 3 F 08 00 – 2– Runtime stack (8 MB limit) n Dynamically allocated storage When call malloc, calloc, new DLLs n Heap DLLs Heap Data Text n n Dynamically Linked Libraries Library routines (e. g. , printf, malloc) Linked into object code when loaded Data n n Statically allocated data E. g. , arrays & strings declared in code Text n n Executable machine instructions Read-only 15 -213, S’ 04

Linux Memory Allocation Initially BF Stack 80 7 F Some Heap Linked BF Stack Linux Memory Allocation Initially BF Stack 80 7 F Some Heap Linked BF Stack 80 7 F More Heap BF Stack 80 7 F Heap 40 3 F 08 00 – 3– 40 3 F Data Text 08 00 DLLs Data Text 40 3 F DLLs Heap 08 00 Data Text 15 -213, S’ 04

Text & Stack Example (gdb) break main (gdb) run Breakpoint 1, 0 x 804856 Text & Stack Example (gdb) break main (gdb) run Breakpoint 1, 0 x 804856 f in main () (gdb) print $esp $3 = (void *) 0 xbffffc 78 Main n Address 0 x 804856 f should be read 0 x 0804856 f Stack n Address – 4– 0 xbffffc 78 Initially BF Stack 80 7 F 40 3 F 08 00 Data Text 15 -213, S’ 04

Dynamic Linking Example (gdb) print malloc $1 = {<text variable, no debug info>} 0 Dynamic Linking Example (gdb) print malloc $1 = {} 0 x 8048454 (gdb) run Program exited normally. (gdb) print malloc $2 = {void *(unsigned int)} 0 x 40006240 Initially Code in text segment that invokes dynamic linker n Address 0 x 8048454 should be read 0 x 08048454 n Final n – 5– Code in DLL region Linked BF Stack 80 7 F 40 3 F 08 00 DLLs Data Text 15 -213, S’ 04

Memory Allocation Example char big_array[1<<24]; /* 16 MB */ char huge_array[1<<28]; /* 256 MB Memory Allocation Example char big_array[1<<24]; /* 16 MB */ char huge_array[1<<28]; /* 256 MB */ int beyond; char *p 1, *p 2, *p 3, *p 4; int useless() { int { p 1 p 2 p 3 p 4 /* } – 6– return 0; } main() = malloc(1 Some print <<28); /* << 8); /* statements 256 256. . . MB B */ */ */ 15 -213, S’ 04

Example Addresses BF $esp p 3 p 1 Final malloc p 4 p 2 Example Addresses BF $esp p 3 p 1 Final malloc p 4 p 2 beyond big_array huge_array main() useless() Initial malloc &p 2? – 7– 0 xbffffc 78 0 x 500 b 5008 0 x 400 b 4008 0 x 40006240 0 x 1904 a 640 0 x 1904 a 538 0 x 1904 a 524 0 x 1804 a 520 0 x 0804 a 510 0 x 0804856 f 0 x 08048560 0 x 08048454 Stack 80 7 F Heap 40 3 F DLLs Heap 08 00 Data Text 0 x 1904 a 42 c 15 -213, S’ 04

C operators Operators () [] ->. ! ~ ++ -- + - * & C operators Operators () [] ->. ! ~ ++ -- + - * & (type) sizeof * / % + << >> < <= > >= == != & ^ | && || ? : = += -= *= /= %= &= ^= != <<= >>= , Associativity left to right to left to right left to right left to right to left right to left to right Note: Unary +, -, and * have higher precedence than binary forms – 8– 15 -213, S’ 04

C pointer declarations int *p p is a pointer to int *p[13] p is C pointer declarations int *p p is a pointer to int *p[13] p is an array[13] of pointer to int *(p[13]) p is an array[13] of pointer to int **p p is a pointer to an int (*p)[13] p is a pointer to an array[13] of int *f() f is a function returning a pointer to int (*f)() f is a pointer to a function returning int (*(*f())[13])() f is a function returning ptr to an array[13] of pointers to functions returning int (*(*x[3])())[5] x is an array[3] of pointers to functions returning pointers to array[5] of ints – 9– 15 -213, S’ 04

Avoiding Complex Declarations Use Typedef to build up the decl Instead of int (*(*x[3])())[5] Avoiding Complex Declarations Use Typedef to build up the decl Instead of int (*(*x[3])())[5] : typedef int fiveints[5]; typedef fiveints* p 5 i; typedef p 5 i (*f_of_p 5 is)(); f_of_p 5 is x[3]; X is an array of 3 elements, each of which is a pointer to a function returning an array of 5 ints. – 10 – 15 -213, S’ 04

Internet Worm and IM War November, 1988 Internet Worm attacks thousands of Internet hosts. Internet Worm and IM War November, 1988 Internet Worm attacks thousands of Internet hosts. n How did it happen? n July, 1999 Microsoft launches MSN Messenger (instant messaging system). n Messenger clients can access popular AOL Instant Messaging Service (AIM) servers n AIM client MSN server MSN client AIM server AIM client – 11 – 15 -213, S’ 04

Internet Worm and IM War (cont. ) August 1999 Mysteriously, Messenger clients can no Internet Worm and IM War (cont. ) August 1999 Mysteriously, Messenger clients can no longer access AIM servers. n Microsoft and AOL begin the IM war: l AOL changes server to disallow Messenger clients l Microsoft makes changes to clients to defeat AOL changes. l At least 13 such skirmishes. n n How did it happen? The Internet Worm and AOL/Microsoft War were both based on stack buffer overflow exploits! l many Unix functions do not check argument sizes. l allows target buffers to overflow. – 12 – 15 -213, S’ 04

String Library Code n Implementation of Unix function gets l No way to specify String Library Code n Implementation of Unix function gets l No way to specify limit on number of characters to read /* Get string from stdin */ char *gets(char *dest) { int c = getc(); char *p = dest; while (c != EOF && c != 'n') { *p++ = c; c = getc(); } *p = ''; return dest; } n – 13 – Similar problems with other Unix functions l strcpy: Copies string of arbitrary length l scanf, fscanf, sscanf, when given %s conversion specification 15 -213, S’ 04

Vulnerable Buffer Code /* Echo Line */ void echo() { char buf[4]; gets(buf); puts(buf); Vulnerable Buffer Code /* Echo Line */ void echo() { char buf[4]; gets(buf); puts(buf); } /* Way too small! */ int main() { printf("Type a string: "); echo(); return 0; } – 14 – 15 -213, S’ 04

Buffer Overflow Executions unix>. /bufdemo Type a string: 12345 Segmentation Fault unix>. /bufdemo Type Buffer Overflow Executions unix>. /bufdemo Type a string: 12345 Segmentation Fault unix>. /bufdemo Type a string: 12345678 Segmentation Fault – 15 -213, S’ 04

Buffer Overflow Stack Frame for main Return Address Saved %ebp [3] [2] [1] [0] Buffer Overflow Stack Frame for main Return Address Saved %ebp [3] [2] [1] [0] buf Stack Frame for echo – 16 – /* Echo Line */ void echo() { char buf[4]; gets(buf); puts(buf); } echo: pushl %ebp movl %esp, %ebp subl $20, %esp pushl %ebx addl $-12, %esp leal -4(%ebp), %ebx pushl %ebx call gets. . . /* Way too small! */ # Save %ebp on stack # # # Allocate stack space Save %ebx Allocate stack space Compute buf as %ebp-4 Push buf on stack Call gets 15 -213, S’ 04

Buffer Overflow Stack Example Stack Frame for main Return Address Saved %ebp [3] [2] Buffer Overflow Stack Example Stack Frame for main Return Address Saved %ebp [3] [2] [1] [0] buf Stack Frame for echo unix> gdb bufdemo (gdb) break echo Breakpoint 1 at 0 x 8048583 (gdb) run Breakpoint 1, 0 x 8048583 in echo () (gdb) print /x *(unsigned *)$ebp $1 = 0 xbffff 8 f 8 (gdb) print /x *((unsigned *)$ebp + 1) $3 = 0 x 804864 d Stack Frame for main Before call to gets 08 04 86 4 d Return Address bf ff f 8 0 xbffff 8 f 8 Saved %ebp xx xx [3][2][1][0] buf Stack Frame for echo 8048648: call 804857 c 804864 d: mov 0 xffffffe 8(%ebp), %ebx # Return Point – 17 – 15 -213, S’ 04

Buffer Overflow Example #1 Before Call to gets Input = “ 123” Stack Frame Buffer Overflow Example #1 Before Call to gets Input = “ 123” Stack Frame for main Return Address Saved %ebp [3] [2] [1] [0] buf Stack Frame for echo 08 04 86 4 d Return Address bf ff f 8 0 xbffff 8 d 8 Saved %ebp 00 33 32 31 [3][2][1][0] buf Stack Frame for echo No Problem – 18 – 15 -213, S’ 04

Buffer Overflow Stack Example #2 Stack Frame for main Return Address Saved %ebp [3] Buffer Overflow Stack Example #2 Stack Frame for main Return Address Saved %ebp [3] [2] [1] [0] buf Stack Frame for echo 8048592: 8048593: 8048598: 804859 b: 804859 d: 804859 e: – 19 – 08 04 86 4 d Return Address bf ff %ebp Saved 00 35 0 xbffff 8 d 8 [3] [2] [1] [0] buf 34 33 32 31 Stack Frame for echo code: push call mov pop ret Input = “ 12345” Saved value of %ebp set to 0 xbfff 0035 Bad news when later attempt to restore %ebp %ebx 80483 e 4 <_init+0 x 50> # gets 0 xffffffe 8(%ebp), %ebx %ebp, %esp %ebp # %ebp gets set to invalid value 15 -213, S’ 04

Buffer Overflow Stack Example #3 Stack Frame for main Return Address Saved %ebp [3] Buffer Overflow Stack Example #3 Stack Frame for main Return Address Saved %ebp [3] [2] [1] [0] buf Stack Frame for echo Input = “ 12345678” 08 04 86 00 Return Address 38 37 36 35 0 xbffff 8 d 8 Saved %ebp 34 33 32 31 [3][2][1][0] buf Stack Frame for echo %ebp and return address corrupted Invalid address No longer pointing to desired return point 8048648: call 804857 c 804864 d: mov 0 xffffffe 8(%ebp), %ebx # Return Point – 20 – 15 -213, S’ 04

Malicious Use of Buffer Overflow Stack after call to gets() return address A void Malicious Use of Buffer Overflow Stack after call to gets() return address A void foo(){ bar(); . . . } void bar() { char buf[64]; gets(buf); . . . } foo stack frame data written by gets() B B pad exploit code bar stack frame Input string contains byte representation of executable code n Overwrite return address with address of buffer n When bar() executes ret, will jump to exploit code n – 21 – 15 -213, S’ 04

Exploits Based on Buffer Overflows Buffer overflow bugs allow remote machines to execute arbitrary Exploits Based on Buffer Overflows Buffer overflow bugs allow remote machines to execute arbitrary code on victim machines. Internet worm n n – 22 – Early versions of the finger server (fingerd) used gets() to read the argument sent by the client: l finger droh@cs. cmu. edu Worm attacked fingerd server by sending phony argument: l finger “exploit-code padding new-returnaddress” l exploit code: executed a root shell on the victim machine with a direct TCP connection to the attacker. 15 -213, S’ 04

The Internet Worm 11/2 18: 24 first west coast computer infected 19: 04 ucb The Internet Worm 11/2 18: 24 first west coast computer infected 19: 04 ucb gateway infected 20: 00 mit attacked 20: 49 cs. utah. edu infected 21: 21 load avg reaches 5 on cs. utah. edu 21: 41 load avg reaches 7 22: 01 load avg reaches 16 22: 20 worm killed on cs. utah. edu 22: 41 cs. utah. edu reinfected, load avg 27 22: 49 cs. utah. edu shut down 23: 31 reinfected, load reaches 37 – 23 – 15 -213, S’ 04

Exploits Based on Buffer Overflows Buffer overflow bugs allow remote machines to execute arbitrary Exploits Based on Buffer Overflows Buffer overflow bugs allow remote machines to execute arbitrary code on victim machines. IM War AOL exploited existing buffer overflow bug in AIM clients n exploit code: returned 4 -byte signature (the bytes at some location in the AIM client) to server. n When Microsoft changed code to match signature, AOL changed signature location. n – 24 – 15 -213, S’ 04

Date: Wed, 11 Aug 1999 11: 30: 57 -0700 (PDT) From: Phil Bucking <philbucking@yahoo. Date: Wed, 11 Aug 1999 11: 30: 57 -0700 (PDT) From: Phil Bucking Subject: AOL exploiting buffer overrun bug in their own software! To: rms@pharlap. com Mr. Smith, I am writing you because I have discovered something that I think you might find interesting because you are an Internet security expert with experience in this area. I have also tried to contact AOL but received no response. I am a developer who has been working on a revolutionary new instant messaging client that should be released later this year. . It appears that the AIM client has a buffer overrun bug. By itself this might not be the end of the world, as MS surely has had its share. But AOL is now *exploiting their own buffer overrun bug* to help in its efforts to block MS Instant Messenger. . . Since you have significant credibility with the press I hope that you can use this information to help inform later determined. AOL's It was people that behind that friendly exterior they are nefariously compromising peoples' security. Sincerely, Phil Bucking Founder, Bucking Consulting – 25 – this email originated from within Microsoft! 15 -213, S’ 04

Code Red Worm History June 18, 2001. Microsoft announces buffer overflow vulnerability in IIS Code Red Worm History June 18, 2001. Microsoft announces buffer overflow vulnerability in IIS Internet server n July 19, 2001. over 250, 000 machines infected by new virus in 9 hours n White house must change its IP address. Pentagon shut down public WWW servers for day n When We Set Up CS: APP Web Site n Received strings of form GET /default. ida? NNNNNNNNNNNNNNNNNNNN. . NNNNNNNNNNNNNNNNNNNNN%u 9090%u 6858 %ucbd 3%u 7801%u 9090%u 6858%ucbd 3% u 7801%u 9090%u 8190%u 00 c 3%u 0003%u 8 b 00%u 531 b%u 53 ff%u 0078%u 0000%u 00=a HTTP/1. 0" 400 325 "-" – 26 – 15 -213, S’ 04

Code Red Exploit Code Starts 100 threads running n Spread self l Generate random Code Red Exploit Code Starts 100 threads running n Spread self l Generate random IP addresses & send attack string l Between 1 st & 19 th of month n n n Attack www. whitehouse. gov l Send 98, 304 packets; sleep for 4 -1/2 hours; repeat » Denial of service attack l Between 21 st & 27 th of month Deface server’s home page l After waiting 2 hours – 27 – 15 -213, S’ 04

Code Red Effects Later Version Even More Malicious n Code Red II As of Code Red Effects Later Version Even More Malicious n Code Red II As of April, 2002, over 18, 000 machines infected n Still spreading n Paved Way for NIMDA Variety of propagation methods n One was to exploit vulnerabilities left behind by Code Red II n ASIDE (security flaws start at home). rhosts used by Internet Worm n Attachments used by My. Doom (1 in 6 emails Monday morning!) n – 28 – 15 -213, S’ 04

Avoiding Overflow Vulnerability /* Echo Line */ void echo() { char buf[4]; /* Way Avoiding Overflow Vulnerability /* Echo Line */ void echo() { char buf[4]; /* Way too small! */ fgets(buf, 4, stdin); puts(buf); } Use Library Routines that Limit String Lengths instead of gets n strncpy instead of strcpy n fgets n Don’t use scanf with %s conversion specification l Use fgets to read the string – 29 – 15 -213, S’ 04

IA 32 Floating Point History n n Instruction decoder and sequencer 8086: first computer IA 32 Floating Point History n n Instruction decoder and sequencer 8086: first computer to implement IEEE FP l separate 8087 FPU (floating point unit) 486: merged FPU and Integer Unit onto one chip Summary Hardware to add, multiply, and divide n Floating point data registers n Various control & status registers n Integer Unit FPU Floating Point Formats single precision (C float): 32 bits n double precision (C double): 64 bits n extended precision (C long double): 80 bits n – 30 – Memory 15 -213, S’ 04

FPU Data Register Stack FPU register format (extended precision) 79 78 s 0 64 FPU Data Register Stack FPU register format (extended precision) 79 78 s 0 64 63 exp frac FPU registers 8 registers n Logically forms shallow stack n Top called %st(0) n n When push too many, bottom values disappear %st(3) %st(2) %st(1) %st(0) “Top” stack grows down – 31 – 15 -213, S’ 04

FPU instructions Large number of fp instructions and formats ~50 basic instruction types n FPU instructions Large number of fp instructions and formats ~50 basic instruction types n load, store, add, multiply n sin, cos, tan, arctan, and log! n Sample instructions: Instruction Effect Description fldz push 0. 0 Load zero flds Addr push M[Addr] Load single precision real fmuls Addr %st(0)*M[Addr] Multiply faddp %st(1) %st(0)+%st(1); pop Add and pop – 32 – 15 -213, S’ 04

Floating Point Code Example Compute Inner Product of Two Vectors n Single precision arithmetic Floating Point Code Example Compute Inner Product of Two Vectors n Single precision arithmetic n Common computation float ipf (float x[], float y[], int n) { int i; float result = 0. 0; for (i = 0; i < n; i++) { result += x[i]*y[i]; } return result; } – 33 – pushl %ebp movl %esp, %ebp pushl %ebx movl 8(%ebp), %ebx movl 12(%ebp), %ecx movl 16(%ebp), %edx fldz xorl %eax, %eax cmpl %edx, %eax jge. L 3. L 5: flds (%ebx, %eax, 4) fmuls (%ecx, %eax, 4) faddp incl %eax cmpl %edx, %eax jl. L 5. L 3: movl -4(%ebp), %ebx movl %ebp, %esp popl %ebp ret # setup # # # %ebx=&x %ecx=&y %edx=n push +0. 0 i=0 if i>=n done # # # push x[i] st(0)*=y[i] st(1)+=st(0); pop i++ if i

pushl %ebp movl %esp, %ebp pushl %ebx # setup Floating Point Code Example movl pushl %ebp movl %esp, %ebp pushl %ebx # setup Floating Point Code Example movl 8(%ebp), %ebx movl 12(%ebp), %ecx movl 16(%ebp), %edx fldz xorl %eax, %eax cmpl %edx, %eax jge. L 3 float ipf (float x[], . L 5: float y[], flds (%ebx, %eax, 4) int n) fmuls (%ecx, %eax, 4) { faddp int i; float result = 0. 0; incl %eax cmpl %edx, %eax for (i = 0; i < n; i++). L 5 jl {. L 3: result += x[i]*y[i]; movl -4(%ebp), %ebx } movl %ebp, %esp return result; popl %ebp } ret – 34 – # # # %ebx=&x %ecx=&y %edx=n push +0. 0 i=0 if i>=n done # # # push x[i] st(0)*=y[i] st(1)+=st(0) pop i++ if i

pushl %ebp movl %esp, %ebp pushl %ebx # setup Floating Point Code Example movl pushl %ebp movl %esp, %ebp pushl %ebx # setup Floating Point Code Example movl 8(%ebp), %ebx movl 12(%ebp), %ecx movl 16(%ebp), %edx fldz xorl %eax, %eax cmpl %edx, %eax jge. L 3 float ipf (float x[], . L 5: float y[], flds (%ebx, %eax, 4) int n) fmuls (%ecx, %eax, 4) { faddp int i; float result = 0. 0; incl %eax cmpl %edx, %eax for (i = 0; i < n; i++). L 5 jl {. L 3: result += x[i]*y[i]; movl -4(%ebp), %ebx } movl %ebp, %esp return result; popl %ebp } ret – 35 – # # # %ebx=&x %ecx=&y %edx=n push +0. 0 i=0 if i>=n done # # # push x[i] st(0)*=y[i] st(1)+=st(0) pop i++ if i

Inner Product Stack Trace Initialization 1. fldz 0. 0 %st(0) Iteration 0 Iteration 1 Inner Product Stack Trace Initialization 1. fldz 0. 0 %st(0) Iteration 0 Iteration 1 2. flds (%ebx, %eax, 4) 0. 0 x[0] %st(1) %st(0) 5. flds (%ebx, %eax, 4) x[0]*y[0] x[1] %st(1) %st(0) 3. fmuls (%ecx, %eax, 4) 6. fmuls (%ecx, %eax, 4) 0. 0 x[0]*y[0] x[1]*y[1] %st(1) %st(0) 4. faddp 0. 0+x[0]*y[0] %st(1) %st(0) 7. faddp %st(0) x[0]*y[0]+x[1]*y[1] – 36 – 15 -213, S’ 04

Final Observations Memory Layout n OS/machine dependent (including kernel version) n Basic partitioning: stack/data/text/heap/DLL Final Observations Memory Layout n OS/machine dependent (including kernel version) n Basic partitioning: stack/data/text/heap/DLL found in most machines Type Declarations in C n Notation obscure, but very systematic Working with Strange Code n Important to analyze nonstandard cases l. E. g. , what happens when stack corrupted due to buffer overflow n Helps to step through with GDB IA 32 Floating Point n Strange – 37 – “shallow stack” architecture 15 -213, S’ 04

Final Recommendation Sign your mail. Google “pgp” – 38 – 15 -213, S’ 04 Final Recommendation Sign your mail. Google “pgp” – 38 – 15 -213, S’ 04